2025-06-11

Français (FR) 93303-004

0000000109-028 SW: 3.62.0 HW: 112, 219, 123P, 220P

Chaudière à bûches SH 20 - 60 kW

Instructions de montage

ETA Heiztechnik GmbH Gewerbepark 1 4716 Hofkirchen an der Trattnach +43 (0)7734 2288-0 www.eta.co.at info@eta.co.at

Sommaire

1	Géné	ral	. 5
	1.1	Avant-propos	. 5
	1.2	Remarques générales	. 5
	1.3	Garantie et responsabilité	
	1.4	Démontage, mise au rebut	. 7
2	Donn	ées techniques	. 8
	2.1	SH 20-30 kW	
	2.2	SH 32-60 kW	
	2.3	TWIN 20-26 kW	12
	2.4	TWIN 40-50 kW	
	2.5	Marquage relatif à la consommation d'énergie	
3	Régle	ementations, normes et directives	16
4	Décla	ration de conformité	17
5	Chau	fferie	18
6		rité	
0	6.1	Remarques générales	
	6.2	Dispositifs de sécurité	
7	Rema	rques relatives au montage	
	7.1	Cheminée	
		7.1.1 Conception et exécution	23
		7.1.2 Assainissement	26
	7.2	Remarques générales	27
	7.3	Eau chauffage	27
		7.3.1 Dureté de l'eau	28
		7.3.2 Corrosion	29
		7.3.3 Aération	29
		7.3.4 Équilibrage de la pression	30
	7.4	Émission acoustique	31
8	Ballo	n tampon	33
	8.1	Remarques générales	33
	8.2	Couplage hydraulique	33
	8.3	Raccordement entre plusieurs ballons tampons	
	8.4	Raccordement parallèle d'accumulateur	
	8.5	Liaison Tichelmann externe	40
	8.6	Raccordement en série des accumulateurs	42
9	Monta	age	44
	9.1	Mise en place de la chaudière	
		9.1.1 Dépose des revêtements latéraux (si nécessaire)	
	9.2	Changer le côté de la butée	
	9.3	Ventilateur d'extraction des gaz de combustion	
	9.4	Montage du tuyau d'évacuation des fumées	
	9.5	Moteurs de réglage	
	9.6	Levier de nettoyage	
	9.7	Démonter les habillages	
	9.8	Connexion réseau	
10		ordement électrique	
10			
	10.1	Conditions préalables	
	10.2	Vue d'ensemble des platines	
	10.2	vuo u onsombre ues piaunes	J

		Platine SH-C2. Platine GM-C3.	
11	Mise	en service	62
	11.1	Liste de contrôle	64
	11.2	Opérations finales	67

Général

1.1 **Avant-propos**

Cher client,

Seul un montage adéquat du produit est en mesure de garantir un fonctionnement sûr et satisfaisant. Ce manuel fournit un aperçu de l'ensemble des étapes de montage, indications et remarques importantes relatives à ce produit. Veuillez prendre le temps de consulter ce manuel.

Prestation de garantie et garantie

Veuillez aussi lire attentivement les conditions de garantie et de responsabilité (cf. le chapitre 1.3 "Garantie et responsabilité"). L'intervention d'un chauffagiste qualifié permet généralement de satisfaire à ces conditions. Veuillez néanmoins lui montrer nos conditions de garantie. Si nous avons ce niveau d'exigence, c'est avant tout pour éviter des dommages potentiellement déplaisants pour vous comme pour nous.

Instruction du client

éviter toute utilisation incorrecte. expliquez précisément à votre client le fonctionnement, l'utilisation et l'entretien de son nouveau produit.

Commande à distance de la chaudière via Internet

La télécommande www.meinETA.at permet de commander votre chaudière ETA depuis votre propre réseau (VNC Viewer) ou depuis Internet à l'aide d'un PC, d'un smartphone ou d'une tablette, comme si vous étiez directement devant la régulation ETAtouch de votre chaudière. Un câble réseau est requis pour la connexion de la régulation ETAtouch au modem Internet.

Vous trouvez des détails relatifs à la télécommande www.meinETA.at dans la notice « Plateforme de communication meinETA ». Détails pour le branchement du câble LAN, se reporter à 9.8 "Connexion réseau".

Extension de garantie

Nous accordons une extension de garantie en cas de mise en service par un partenaire autorisé ou par notre service clientèle. Veuillez vous reporter à cet effet aux conditions de garantie en vigueur au moment de l'achat.

Contrat de maintenance

Pour un suivi optimal de votre installation de chauffage, il est nécessaire de souscrire un contrat de maintenance avec une entreprise spécialisée certifiée par nos soins ou avec notre service clientèle d'usine.

1.2 Remarques générales

Droit d'auteur

Tous les contenus du présent document appartiennent à la société ETA Heiztechnik GmbH et font par conséquent l'objet d'un droit de propriété intellectuelle Toute reproduction, transmission à des tiers ou utilisation à d'autres fins est strictement interdite sans l'autorisation écrite du propriétaire.

Sous réserve de modifications techniques

Nous nous réservons le droit de procéder à des modifications techniques, même sans préavis. Les erreurs d'impression ou les modifications apportées dans l'intervalle ne donnent droit à aucune réclamation. Les variantes d'équipement illustrées ou décrites dans ces manuels sont disponibles uniquement en option. En cas de contradiction entre les différents documents relatifs au contenu livré, les informations indiquées dans nos tarifs actuels prévalent.

Description des symboles

Informations et remarques

Structure des consignes de sécurité

MENTION D'AVERTISSEMENT!

Type et origine du danger

Conséquences possibles

Mesures permettant d'éviter le danger

Gradation des consignes de sécurité

ATTENTION!

Le non-respect de cette consigne de sécurité risque d'entraîner des dommages matériels.

ATTENTION!

Le non-respect de cette consigne de sécurité risque d'entraîner des blessures.

DANGER!

Le non-respect de cette consigne de sécurité risque d'entraîner des blessures graves.

Explication des pictogrammes

Allumer et éteindre la chaudière avec l'interrupteur secteur.

Effectuer un contrôle visuel des composants.

Nettoyer les composants, par exemple avec un chiffon doux.

Éliminer les dépôts avec un aspirateur à poussière ou à cendres.

Éliminer les dépôts avec le tisonnier.

Éliminer les dépôts avec la brosse de nettoyage.

5

93303-004

Remplacer les composants (les joints, par exemple) par des neufs.

Lubrifier les composants. Le lubrifiant à utiliser est indiqué à l'étape correspondante.

Monter ou desserrer les composants (comme par exemple, les vis ou les écrous) uniquement à la main, sans outil.

Avec l'outillage, serrer à bloc les composants (comme par exemple, les vis ou les écrous).

Monter à force les composants (comme par exemple, le tuyau de support de la sonde lambda).

Manipuler les composants avec précaution car ils peuvent casser facilement par exemple.

Mesurer ou contrôler les dimensions ou les distances sur les composants.

Marquer les composants pour permettre de déterminer la position correcte pendant le montage, par exemple.

Porter un masque respiratoire pour éviter toute lésion des voies respiratoires.

Étanchéifier les composants. Le mastic à utiliser est indiqué à l'étape correspondante.

Isoler les composants. Le matériau d'isolation à utiliser est indiqué à l'étape correspondante.

Utiliser de la colle, par exemple pour coller les joints.

Utiliser de la colle en pulvérisation, par exemple pour coller les joints.

Souffler sur les composants avec la bouche seulement.

Mettre en place un joint. La section et le matériau d'étanchéité nécessaires seront indiqués à l'étape respective.

Serrer à bloc les boulons ou les écrous en alternance et uniformément.

Nettoyer les composants en les rinçant à l'eau.

Lubrifier les composants ou les surfaces de contact avec de la pâte de cuivre.

Lubrifier les composants ou les surfaces de contact avec un lubrifiant sec, par exemple du PTFE.

Lubrifier les composants ou les surfaces de contact avec de la graisse multi-usages.

Débrancher le connecteur électrique du composant.

Brancher le connecteur électrique au composant.

Effectuer un contrôle par palpage sur les composants

Ne pas utiliser d'air comprimé pour nettoyer les composants.

Ne pas utiliser de brosse de nettoyage pour nettoyer les composants.

Ne pas utiliser d'aspirateur à poussières ou à cendres

Ne pas lubrifier les composants.

Pas d'eau ni d'humidité dans cette zone.

Pas de défaut d'étanchéité (fuites) sur les composants, p. ex. raccord à vis ou trappe de visite.

Ne pas plier les composants.

Ne laissez aucun composant ou petite pièce tomber à l'intérieur.

1.3 Garantie et responsabilité

Conditions préalables

Nous ne pouvons garantir le bon fonctionnement de nos produits et engager notre responsabilité que si ceux-ci sont correctement installés et mis en service, et seulement si les conditions mentionnées ci-après sont respectées.

Max. 2 000 heures à pleine puissance par an

Il est uniquement permis d'utiliser la présente chaudière pour le chauffage et la préparation d'ECS pendant un maximum de 2 000 heures à pleine puissance par an.

Combustible approprié - Bûches

La chaudière à bûches est conçue pour la combustion de bûches séchées à l'air (teneur en eau max. 20 %) et de briquettes en bois. La chaudière ne doit en aucun cas être utilisée avec des combustibles inappropriés, notamment avec des déchets, du charbon, du coke et du bois humide.

Dureté d'eau admissible

C'est l'eau qui sert à transporter la chaleur. En cas de besoin particulier de protection antigel, il est possible d'ajouter jusqu'à 30% de glycol. Utilisez de l'eau adoucie lorsque vous remplissez l'installation de chauffage pour la première fois ou suite à une réparation. L'ajout d'eau calcaire doit rester faible pour limiter les dépôts de tartre dans la chaudière.

Pour protéger la chaudière de l'entartrage, il faut surveiller la dureté de l'eau de chauffage. Pour cela, observer les indications de l'ÖNORM H 5195-1. Vous trouverez de plus amples informations à ce sujet au chapitre 7.3.1 "Dureté de l'eau".

pH entre 8 et 9

Le pH de l'eau ajoutée dans l'installation de chauffage doit être réglé entre 8 et 9.

Dispositifs d'arrêt en nombre suffisant

Il est nécessaire d'installer suffisamment de dispositifs d'arrêt pour éviter de devoir vidanger de grandes quantités d'eau en cas de réparation. Les défauts d'étanchéité dans le système doivent être réparés immédiatement.

Température de retour minimale de 60 °C

Une température de retour minimale de 60 °C dans la chaudière doit être garantie.

Installer une soupape de sécurité et une soupape thermique

Une soupape de sécurité (déclenchement à 3 bar) de surpression et une soupape thermique (déclenchement à 97 °C) antisurchauffe doivent être installées sur site.

Vase d'expansion de taille suffisante ou dispositif de maintien de pression

Vous devez faire installer par un expert un vase d'expansion d'une taille suffisamment importante ou un dispositif de maintien de la pression afin de protéger l'installation contre l'aspiration d'air lors du refroidissement.

Aucun vase d'expansion ouvert ne doit être utilisé.

Puissance suffisante

Il est interdit d'utiliser la chaudière à une puissance inférieure à la valeur la plus faible indiquée sur la plaque signalétique.

Extensions de la régulation

Pour étendre la régulation, utilisez exclusivement les composants que nous fournissons, dans la mesure où il ne s'agit pas de dispositifs standards courants, comme par ex. les thermostats.

Procéder à un nettoyage et à un entretien réguliers

Le nettoyage et l'entretien du produit sont obligatoires. Les intervalles et les étapes nécessaires sont soit dans la documentation présente, soit fournies dans un document à part.

Réparations

Pour les réparations, utilisez uniquement les pièces de rechange fournies par nos soins ou les pièces standard courantes de type fusibles électriques ou matériel de fixation (si elles présentent les caractéristiques requises et ne limitent pas la sécurité de l'installation).

Montage conforme

L'entreprise spécialisée qui procède à l'installation est garante de la bonne installation, dans le respect des instructions de montage et des règles et consignes de sécurité. Si vous avez procédé au montage (total ou partiel) de l'installation de chauffage alors que vous n'avez pas suivi de formation spécialisée et que surtout vous n'avez pas de pratique récente dans ce domaine, sans avoir fait superviser l'installation par un professionnel qualifié se portant garant, les défauts de livraison et les dommages consécutifs à votre intervention seront exclus de notre garantie et de notre responsabilité.

Réparation

En cas de réparations effectuées par le client ou par un tiers, ETA n'assumera les coûts, sa responsabilité et n'accordera une garantie que dans la mesure où le service technique d'ETA Heiztechnik GmbH a donné son accord par écrit avant le début de ces travaux.

Empêcher l'accès aux dispositifs de sécurité de la chaudière

Il est interdit d'intervenir sur les dispositifs de sécurité de la chaudière comme par exemple la surveillance et la régulation de la température, le limiteur de température de sécurité, les soupapes de sécurité et les soupapes thermiques.

1.4 Démontage, mise au rebut

Démontage

Avant de procéder au démontage :

- Arrêter le mode chauffage. Ensuite, mettre la chaudière hors tensions avec l'interrupteur secteur et le bloquer contre toute remise en service intempestive.
- Débrancher toutes les alimentations en énergie de la chaudière (et le cas échéant aussi l'extraction de combustible).

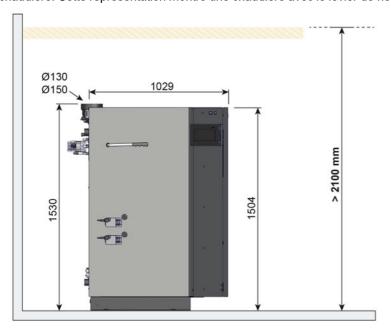
Le démontage s'effectue dans l'ordre inverse du montage.

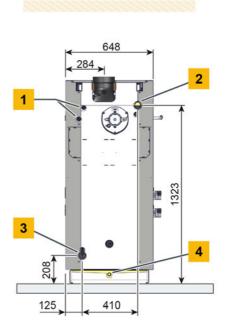
Nettoyer les composants et les démonter dans les règles de l'art en respectant la réglementation locale en matière de protection du travail et de l'environnement.

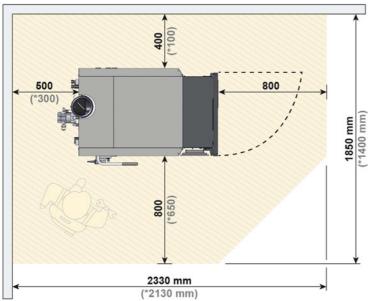
Mise au rebut

La mise au rebut de la chaudière et des équipements auxiliaires doit être effectuée de manière écologique, conformément à la loi relative à l'élimination des déchets. Les matières recyclables doivent intégrer le circuit de valorisation

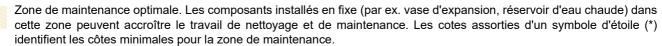
93303-004


7


2 Données techniques


2.1 SH 20-30 kW

Chaudière à bûches SH de 20 à 30 kW


Le levier de nettoyage et les moteurs de réglage des clapets d'air peuvent être montés, au choix, à gauche ou à droite de la chaudière. Cette représentation montre une chaudière avec le levier de nettoyage et les moteurs de réglage sur le côté gauche.

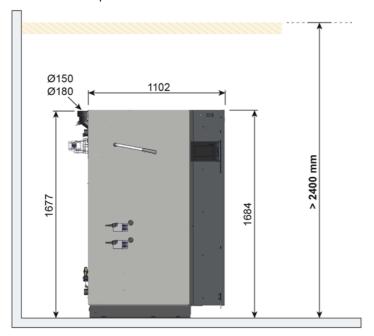
- 1 Echangeur de chaleur de sécurité R1/2" AG
- 2 Départ chaudière avec manchon R5/4"
- 3 Retour chaudière avec manchon R5/4"
- 4 Purgeur avec manchon R1/2"

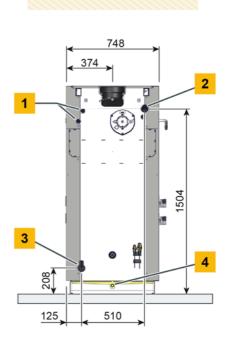
Si le brûleur à pellets TWIN doit être installé ultérieurement, il faut prendre en compte l'espace supplémentaire nécessaire lors de l'installation de la chaudière à bûches.

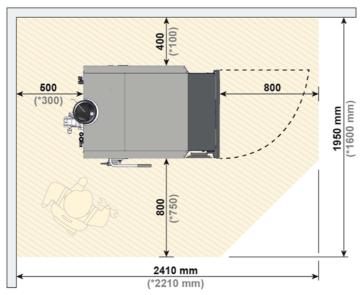
Le raccord d'évacuation des gaz au niveau de la chaudière ne fournit encore aucune indication sur le diamètre de cheminée nécessaire. Des informations relatives au diamètre de cheminée nécessaire figurent dans les instructions de montage de la chaudière au chapitre Cheminée.

Chaudière à bûches SH	Unité	20	30
Puissance thermique nominale	kW	20	28
Puissance de combustion	kW	21	29,5
Rendement à puissance nominale	%	95,4	94,8
Classe d'efficacité énergétique installation composite		A++	A++
Foyer	mm	560 mm de profond 0,5 Ouverture de porte	
Capacité de la trémie de combustible	en litres		50
Encombrement I x p x h	mm	648 x 108	
Largeur de chaudière une fois le revêtement démonté	mm		17
Poids	kg	580	583
Contenance en eau	en litres		10
Résistance du côté de l'eau (ΔT = 20 °C)	Pa / mCE	190 / 0,019	370 / 0,037
Débit massique des fumées à puissance nominale	g/s	12,8	18,6
Teneur en CO ₂ dans les fumées sèches à puissance nominale	%	13	14
Température des fumées à la puissance nominale	°C	~1	60
Tirage de cheminée requis	-		
Au-delà de 25 Pa, un modérateur de tirage est recommandé.	Pa	>	5
Puissance électrique absorbée à la puissance nominale	W	43	53
Puissance électrique absorbée en mode veille	W	10	10
Volume d'accumulateur recommandé	en litres	> 1100, op	timal 2000
Volume d'accumulateur obligatoire en Allemagne (Ordonnance BimSchV 1)	en litres	1100	1650
Pression de service maximale autorisée	bars	3	3
Plage de réglage du régulateur de température de la chaudière	°C	70 -	- 85
Température de service maximale autorisée	°C	8	5
Température de retour minimale	°C	6	0
Catégorie de chaudière	5 selon EN 30	03-5	
Combustibles testés	Bûches EN IS maximale de	6O 17225-5, avec un 20 %	ne teneur en eau
Raccordement électrique	1 x 230 V / 50) Hz / 13 A	
Mode de fonctionnement	sans condens	sation	
Valeurs d'émission à charge nominale			
Les valeurs d'émissions se fondent sur un O ₂ résiduel de 13 %.			
Manayyda da garbana (CO)	mg/MJ	16	13
Monoxyde de carbone (CO)	mg/m³	24	19
Dougoière	mg/MJ	6	4
Poussière	mg/m³	9	6
Hydrocarhuras imbrûlás (CVHy)	mg/MJ	1	0
Hydrocarbures imbrûlés (CxHy)	mg/m³	1	0

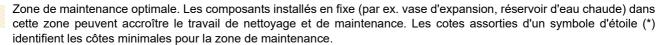
Sous réserve de modifications techniques et d'erreurs

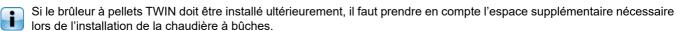

93303-004


9


2.2 SH 32-60 kW

Chaudière à bûches SH de 32 à 60 kW


Le levier de nettoyage et les moteurs de réglage des clapets d'air peuvent être montés, au choix, à gauche ou à droite de la chaudière. Cette représentation montre une chaudière avec le levier de nettoyage et les moteurs de réglage sur le côté gauche.

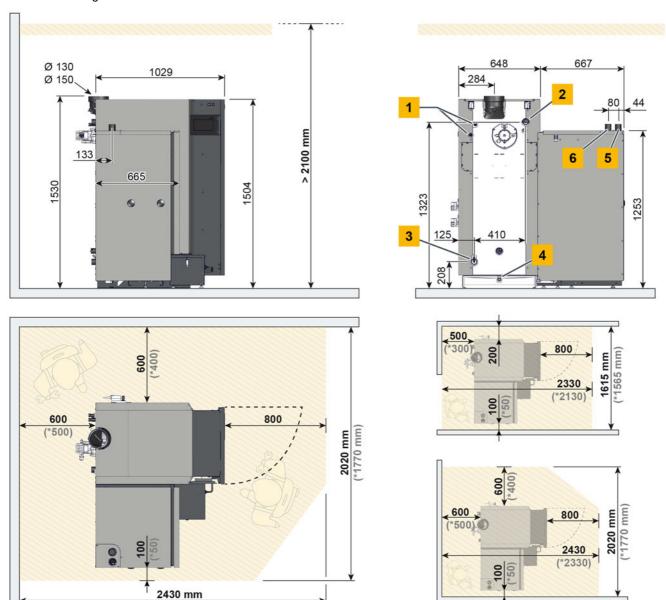


- 1 Echangeur de chaleur de sécurité R1/2" AG
- 2 Départ chaudière avec manchon R5/4"
- 3 Retour chaudière avec manchon R5/4"
- 4 Purgeur avec manchon R1/2"

Le raccord d'évacuation des gaz au niveau de la chaudière ne fournit encore aucune indication sur le diamètre de cheminée nécessaire. Des informations relatives au diamètre de cheminée nécessaire figurent dans les instructions de montage de la chaudière au chapitre Cheminée.

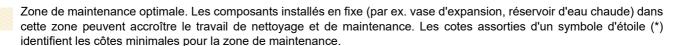
Chaudière à bûches SH	Unité	32 ^{IT}	40	50	60
Puissance thermique nominale	kW	32	40	47	57,8

Chaudière à bûches SH	Unité	32 ^{IT}	40	50	60
Puissance de combustion	kW	33,8	42,3	49,7	61,8
Rendement à puissance nominale	%	94,7	94,6	94,5	93,6
Classe d'efficacité énergétique installation composite		A++	A++	A++	A+
Foyer	mm		de profondeur	-	
·		Ouve	erture de porte		5 mm
Capacité de la trémie de combustible	en litres			23	
Encombrement I x p x h	mm			47 x 1684	
Largeur de chaudière une fois le revêtement démonté	mm		T .	17	T
Poids	kg	791	791	793	795
Contenance en eau	en litres			70	1
Résistance du côté de l'eau (ΔT = 20 °C)	Pa / mCE	370 / 0,037	220 / 0,022	340 / 0,034	480 / 0,048
Débit massique des fumées à puissance nominale	g/s	19,6	24,0	30,2	35,4
Teneur en CO_2 dans les fumées sèches à puissance nominale	%	14,5	14,5	14,5	15
Température des fumées à la puissance nominale	°C		~1	60	
Tirage de cheminée requis					
Au-delà de 25 Pa, un modérateur de tirage est recommandé.	Pa	> 5			
Puissance électrique absorbée à la puissance nominale	W	78	58	62	89
Puissance électrique absorbée en mode veille	W	11	10	10	11
Volume d'accumulateur recommandé	en litres		> 2200, op	timal 3000	
Volume d'accumulateur obligatoire en Allemagne (Ordonnance BimSchV 1)	en litres	1760	2200	2750	3300
Pression de service maximale autorisée	bars		(3	
Plage de réglage du régulateur de température de la chau- dière	°C		70	- 85	
Température de service maximale autorisée	°C		8	5	
Température de retour minimale	°C		6	60	
Catégorie de chaudière	5 selon EN 30	03-5			
Combustibles testés	Bûches EN IS %	SO 17225-5, a	ivec une tene	ur en eau ma	ximale de 20
Raccordement électrique	1 x 230 V / 50) Hz / 13 A			
Mode de fonctionnement	sans condens	sation			
Valeurs d'émission à charge nominale					
Les valeurs d'émissions se fondent sur un O ₂ résiduel de 1					
Monoxyde de carbone (CO)	mg/MJ	15	18	20	12
	mg/m³	21	26	30	17
Poussière	mg/MJ	5	6	7	12
1 00001010	mg/m³	7	9	11	17
Hydrocarbures imbrûlés (CxHy)	mg/MJ	0	1	1	1
Trydrocalbules Illibiules (OxiTy)	mg/m³	0	1	1	1


Sous réserve de modifications techniques et d'erreurs

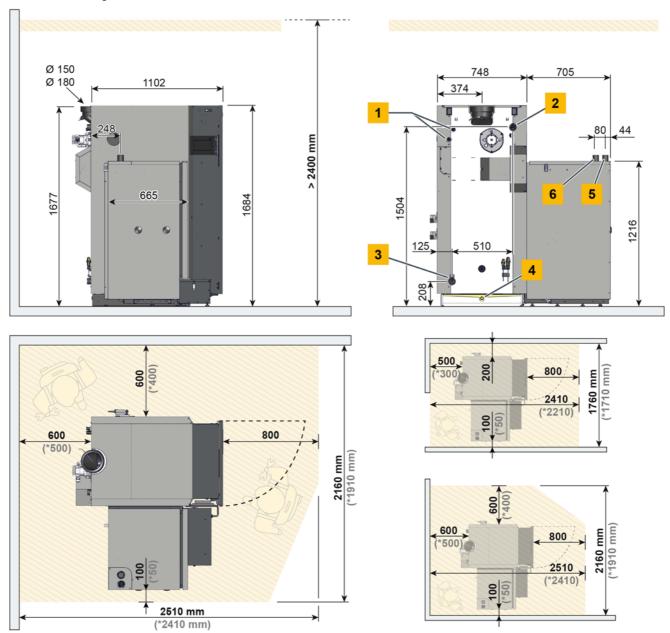
2.3 TWIN 20-26 kW

Fiche technique du brûleur à pellets TWIN 20 - 26 kW


Le brûleur à pellets peut être fourni en version montage à gauche ou montage à droite. Sur l'illustration, le brûleur à pellets est monté sur le côté gauche de la chaudière à bûches.

1 Echangeur de chaleur de sécurité R1/2" AG

(*2330 mm)


- 2 Départ chaudière avec manchon R5/4"
- 3 Retour chaudière avec manchon R5/4"
- 4 Purgeur avec manchon R1/2"
- 5 Raccord d'aspiration des Pellets DN50
- 6 Reprise d'air des pellets DN50

2.4 TWIN 40-50 kW

Fiche technique du brûleur à pellets TWIN 40 - 50 kW

Le brûleur à pellets peut être fourni en version montage à gauche ou montage à droite. Sur l'illustration, le brûleur à pellets est monté sur le côté gauche de la chaudière à bûches.

- 1 Echangeur de chaleur de sécurité R1/2" AG
- 2 Départ chaudière avec manchon R5/4"
- 3 Retour chaudière avec manchon R5/4"
- 4 Purgeur avec manchon R1/2"
- 5 Raccord d'aspiration des Pellets DN50
- 6 Reprise d'air des pellets DN50

Zone de maintenance optimale. Les composants installés en fixe (par ex. vase d'expansion, réservoir d'eau chaude) dans cette zone peuvent accroître le travail de nettoyage et de maintenance. Les cotes assorties d'un symbole d'étoile (*) identifient les côtes minimales pour la zone de maintenance.

2.5 Marquage relatif à la consommation d'énergie

Contrôle et homologation par un institut de contrôle

Nos produits sont suffisamment contrôlés et homologués par des instituts de contrôle reconnus. Nous vous fournissons volontiers les rapports respectifs si nécessaire.

Données du produit conformément aux Réglements UE 2015/1187 et 2015/1189

Le volume nécessaire du tampon pour la chaudière figure dans les instructions de montage. Toutes les chaudières sont déjà équipées d'un régulateur de température intégré, c'est pourquoi chaque produit est une « installation composite ». Les valeurs d'émissions sont basées sur une valeur résiduelle en O₂ de 10 %.

Fabricant:

ETA Heiztechnik GmbH, Gewerbepark 1, A-4716 Hofkirchen an der Trattnach

Chaudière à bûches 20-60 kW

	11.47	SH20	SH30	SH32	SH40	SH50	SH60
	Unité	SH20P	SH30P	SH32P	SH40P	SH50P	SH60P
		10020-T	10030-T	10032-T	10040-T	10050-T	10060-T
N° d'article		10020P-	10030P-	10032P-	10040P-	10050P-	10060P- T
Puissance thermique nominale	kW	T 20	T 28	32	T 40	47	58
Alimentation en combustible (manuelle / automatique)	KVV	20	20	man		41	30
Proportion de la charge partielle par rapport à la charge				IIIaII	uelle		
nominale (30% / 50%)	%	50	50	50	50	50	50
Régulateur de température intégré dans la chaudière (oui / non)		oui	oui	oui	oui	oui	oui
Catégorie de régulateur de température		VIII	VIII	VIII	VIII	VIII	VIII
Contribution du régulateur de température à l'efficacité énergétique de l'installation composite	%	5	5	5	5	5	5
Facteur II (pondération chaudière à combustible solide primaire et appareil de chauffage auxiliaire)		0	0	0	0	0	0
Valeur pour III (294/(11*Pr))		1,34	0,95	0,84	0,67	0,57	0,46
Valeur pour IV (115/(11*Pr))		0,52	0,37	0,33	0,26	0,22	0,18
Condensation (oui / non)				no	on		
Chaudière combinée pour l'eau chaude et le chauffage (oui/non)				no	on		
Cogénération (oui / non)				no	on		
Combustible privilégié			Bûcl	nes, teneu	r en eau ≤	20%	
Puissance nominale chauffage (selon la puissance utile)	kW	20	28	32	40	47	57,8
Puissance partielle	kW	1	/	/	/	/	/
Rendement du combustible (selon la valeur calorifique) à la puissance nominale	%	86,9	86,3	86,3	86,2	86,1	83,15
Rendement combustible (selon la valeur calorifique) à puissance partielle	%	1	1	1	1	1	1
Puissance électrique absorbée à la puissance nominale	kW	0,043	0,053	0,055	0,058	0,060	0,089
Puissance électrique absorbée à puissance partielle	kW	1	1	1	1	1	1
Puissance électrique absorbée en mode veille	kW	0,01	0,01	0,01	0,01	0,01	0,011
Classe d'efficacité énergétique chaudière		A+	A+	A+	A+	A+	A+
Indice d'efficacité énergétique chaudière		122	122	122	121	121	117
Classe d'efficacité énergétique installation composite		A++	A++	A+	A++	A++	A+
Indice d'efficacité énergétique installation composite		127	127	127	126	126	122
Taux d'utilisation annuel de chauffage intérieur ns	%	83	83	83	83	83	80

Chaudière à bûches 20-60 kW

	Holtá	SH20	SH30	SH32	SH40	SH50	SH60
	Unité	SH20P	SH30P	SH32P	SH40P	SH50P	SH60P
Émissions annuelles du chauffage intérieur - Poussières	mg/m³	13	8	10	13	15	24
Émissions annuelles du chauffage intérieur - OGC	mg/m³	1	1	1	2	2	2
Émissions annuelles du chauffage intérieur - CO	mg/m³	33	27	30	36	42	24
Émissions annuelles du chauffage intérieur - NOx	mg/m³	104	119	117	112	107	149

Tab. 2-1: Données du produit conformément aux Réglements UE 2015/1187 et 2015/1189

3 Réglementations, normes et directives

Réglementations

- · Règlement national en matière de construction
- Réglementations industrielles et en matière de protection incendie
- Ordonnance des Länder en matière de protection incendie
- En Allemagne, la EnEG (loi relative aux économies d'énergie dans les bâtiments), qui s'accompagne des règlements EnEV édictés (règlement relatif à l'isolation thermique et aux techniques des installations pour réaliser des économies d'énergie dans les bâtiments)
- En Allemagne, 1.BImSchV « Premier règlement relatif à l'application de la loi fédérale de contrôle des émissions (règlement pour chambres de combustion à petite échelle) »
- En Autriche, « Art. 15 a de l'accord relatif aux mesures de protection concernant les chambres de combustion à petite échelle »
- En Autriche, « Art. 15 a de l'accord relatif aux économies d'énergie »
- En Suisse, Directives de protection incendie VKF/AEAI 25-03 et 106-03

Normes et directives

 ÖNORM H 5195-1 « Prévention des dommages dus à la corrosion et à la formation de calcaire dans les systèmes de chauffage à circuit d'eau chaude ».

Déterminer la dureté de l'eau de chauffage à l'aide du tableau figurant au chapitre 7.3.1 "Dureté de l'eau".

L'exigence indiquée dans la norme ÖNORM H 5195-1 est considérée comme le minimum requis pour l'eau de chauffage. Si le pays d'exploitation

présente des réglementations plus strictes, celles-ci doivent être respectées.

- VDI 2035 « Prévention des dommages dus à la corrosion et à la formation de calcaire dans les systèmes de chauffage à circuit d'eau chaude avec des températures de départ max. de 120 °C ».
- EN 12828 « Systèmes de chauffage dans les bâtiments — Planification des systèmes de chauffage à eau chaude ».

Le contacteur de sécurité thermique (106 °C) est déjà installé dans la chaudière. Un vase d'expansion de taille suffisante (d'une capacité correspondant au min. à 10 % du volume de l'installation), une soupape de sécurité (3 bars) et une soupape thermique doivent être installés sur site. La sortie de la soupape de sécurité et de la soupape thermique doit être tubée à un raccord au canal.

Selon les normes en vigueur, une sécurité de manque d'eau ou une limite de pression minimale peuvent être installées.

- EN 12831 « Systèmes de chauffage dans les bâtiments – Méthode de calcul des déperditions calorifiques de base »
- EN 13384 « Conduits de fumée Méthodes de calcul thermo-aéraulique »
- En Allemagne, DIN 18160 « Conduits de fumée -Conception et exécution »
- En Autriche, ÖNORM H 5170 « Systèmes de chauffage
 Exigences de construction et de protection incendie »

Mesure régulière des émissions pour les installations de chauffage professionnelles de plus de 50 kW

Des mesures régulières des émissions sont prescrites en Autriche pour toutes les installations de chauffage professionnelles de plus de 50 kW (voir Décret sur les installations à foyer).

4 Déclaration de conformité

Déclaration de conformité CE

Fabricant : ETA Heiztechnik GmbH

A-4716 Hofkirchen an der Trattnach, Gewerbepark 1

Produit : Chaudière à bûches avec ventilateur d'extraction des gaz de combustion

Modèles: ETA SH 20 - 60 kW

Directives UE:

2014/68/UE Directive relative aux équipements sous pression 2014/30/UE Compatibilité électromagnétique (directive CEM)

2006/42/CE Directive sur les machines

2014/35/UE Directive concernant le rapprochement des législations des États membres relatives au matériel

électrique (directive basse tension)

2011/65/UE Directive relative à la limitation de l'utilisation de certaines substances dangereuses dans les équi-

pements électriques et électroniques (Directive RoHS 2)

2009/125/CE Exigences en matière d'écoconception applicables aux produits consommateurs d'énergie

2015/1189/UE Ligne directrice établissant des exigences pour la conception écologique des chaudières à combus-

tible solide

Normes appliquées :

EN-303-5:2023 ^a Chaudières de chauffage central -

- Partie 5 : chaudières spéciales pour combustibles solides, à chargement manuel et automatique,

puissance utile inférieure ou égale à 500 kW - Définitions, exigences, essais et marquage -

EN ISO 12100:2011 Sécurité des machines -

Principes généraux - Évaluation et réduction des risques

EN 60335-1:2012 Sécurité des appareils électriques domestiques et analogues -

Partie 1 : exigences générales

EN 60335-2-102:2016 Sécurité des appareils électriques domestiques et analogues -

Partie 2-102 : règles particulières pour les appareils à combustion au gaz, au mazout et à combus-

tible solide comportant des raccordements électriques

IEC 61000-6 1/2:2005 Compatibilité électromagnétique (CEM) :

Normes spécialisées de base - Immunité pour les environnements résidentiels, commerciaux (1) et

de l'industrie légère (2)

CEI 61000-6 3/4:2011

Compatibilité électromagnétique (CEM) :

+ A1:2011

Normes spécialisées de base - Émissions parasites dans les zones d'habitation, les entreprises ainsi

que les PME (3) et l'industrie (4)

a. SH60: EN 303-5:2012

Par la présente, nous déclarons que le produit indiqué satisfait, dans sa version de fabrication en série, les dispositions mentionnées. Le fabricant est seul responsable de l'émission de la présente déclaration de conformité. La documentation technique de ce produit est gérée par ETA Heiztechnik GmbH. Signé par et au nom de :

Hofkirchen, 22.10.2024

Ing. Johann Eibelhuber Assurance sur la qualité

Solhuber 12

DI Ferdinand Tischler Direction

5 Chaufferie

Exigences générales envers la chaufferie

Les exigences générales et les plus importantes envers une chaufferie ou un local d'installation pour l'installation de chauffage sont répertoriées ici. Des réglementations nationales spécifiques peuvent s'appliquer en supplément, veuillez vous renseigner auprès d'un expert.

- Le local d'installation doit obligatoirement être protégé du gel, des intempéries et de la pénétration d'eau. La plage de températures ambiantes admissible est comprise entre 15 et 35 °C.
 - Éviter impérativement les variations de température et d'humidité. Les sèche-linge, notamment, ne peuvent être installés dans le même local que s'il s'agit de sèche-linge à condensation.
- La chaudière doit reposer sur un sol plan et non combustible. Le sol doit présenter une capacité de charge suffisante afin de pouvoir supporter le poids de la chaudière. Voir pour ce faire le chapitre <u>2</u>
 "Données techniques".
- Les réglementations nationales en vigueur en matière de construction et de protection contre les incendies doivent être respectées.
- Des sections minimales sont prescrites pour les orifices d'arrivée et d'évacuation d'air pour la chaudière dans la chaufferie, se reporter au tableau <u>Tab. 5-1: "Orifice</u> d'arrivée d'air nécessaire".
 - 1

Les chaudières qui sont exploitées indépendamment de l'air ambiant ne requièrent aucun orifice d'air d'arrivée et d'air évacué dans la chaufferie.

- L'air alimenté dans la chaudière doit être exempte de matières agressives (par ex. chlore et fluor provenant de solvants, de détergents, de colles et de gaz propulseurs ou ammoniac provenant de produits de nettoyage) afin d'éviter la corrosion de la chaudière et de la cheminée. De même, il est interdit d'entreposer du sel pour un système d'adoucissement de l'eau dans le même local ou des lessives pour les lave-linges.
- Il est nécessaire de rincer régulièrement les évacuations au sol et les siphons à l'eau afin de les étanchéiser et qu'aucun gaz ne parvienne depuis le d'égouts dans la chaufferie.
- Il faut s'assurer qu'aucune dépression n'apparaît dans la chaudière afin de prévenir toute évacuation des gaz d'échappement. Les installations déjà en place dans le bâtiment, comme par exemple une aspiration pour une installation d'aération ou la mise en place de compresseurs sont donc interdites.
- La distance par rapport aux matériaux combustibles à proximité de la chaudière doit être respectée conformément aux directive nationales.
- Les réglementations nationales en vigueur en matière de construction et de protection contre les incendies doivent être respectées.
- Une chaufferie doit être bâtie avec des parois et des plafonds coupe-feu El90 (F90); en Suisse: El30 jusqu'à 70 kW et El60 en cas de puissance supérieure à 70 kW.
- Une issue de secours menant vers l'extérieur ou vers un couloir est requise. La porte El30 (F30) doit s'ouvrir dans le sens d'évacuation et se fermer automatiquement et hermétiquement. Les portes de la chaufferie

- débouchant sur des issues de secours doivent être conçues selon la classe El90 (F90). Aucune chaudière ne doit être installée dans les cages d'escalier, les couloirs ou les pièces constituant des issues de secours menant vers l'extérieur.
- Dans la chaufferie, l'éclairage doit être suffisant pour le montage, la mise en service et les opérations d'entretien.

Orifice d'arrivée d'air suffisant dans la chaufferie

La chaudière a besoin d'air pour la combustion. C'est pourquoi des sections libres minimales sont requises pour les orifices d'arrivée d'air dans la chaufferie. En Autriche, ceux-ci sont définies par l'ÖNORM H 5170, se reporter au tableau ci-après. Les valeurs indiquées peuvent varier par rapport aux réglementations spécifiques régionales ainsi que nationales. Merci de vous renseigner auprès des autorités compétentes. En l'absence de toute prescription, nous vous recommandons d'utiliser la section minimale autrichienne comme valeur de référence.

Puissance	Section	Section libre minimale en cm²						
de la chau- dière [kW]	Autriche ^a	Allemagne	Suisse					
20	400	150	206					
30	400	150	309					
40	400	150	412					
50	400	150	515					
60	400	170	618					
70	400	190	721					
90	400	230	927					
110	440	270	1133					
130	520	310	1339					
180	720	410	1854					
200	800	450	2060					
350	1400	750	3605					
500	2000	1050	5150					

a. Valeur indicative d'ETA quand il n'y a pas de prescriptions

Tab. 5-1: Orifice d'arrivée d'air nécessaire

Une grille de protection sur l'orifice d'arrivée d'air réduit également la section libre. C'est pourquoi l'orifice d'arrivée d'air doit être plus important en présence d'une grille. En cas d'alimentations en air via des canaux, le calcul doit être effectué par un spécialiste. Un orifice d'arrivée d'air dimensionné trop petit peut entraîner la formation d'une dépression dans la chaufferie et ainsi affecter le fonctionnement du régulateur de tirage. Une dépression dans la chaufferie peut provoquer une réduction de la puissance de la chaudière ainsi qu'une sortie de gaz de fumée dans la chaufferie.

Les chaudières qui sont exploitées indépendamment de l'air ambiant ne requièrent aucun orifice d'air d'arrivée et d'air évacué dans la chaufferie.

Installation d'une liaison équipotentielle pour la chaudière

La chaudière doit être raccordée à la liaison équipotentielle du local d'installation ou du bâtiment. Du côté inférieur de la chaudière, des alésages sont présents à cet effet pour le raccordement à la liaison équipotentielle. Respectez les réglementations nationales spécifiques.

Stockage du combustible

En Allemagne, il est possible de stocker jusqu'à 10 000 litres (6,5 tonnes) de pellets ou 15 000 kg (20 m³) de bûches dans le lieu d'installation de la chaudière ou dans la chaufferie. Un silo de stockage F90 (El90) distinct et résistant au feu est requis en cas de quantités plus importantes.

En Autriche, seule la quantité de bois hebdomadaire requise peut être stockée à côté de la chaudière. Pour les pellets, un silo de stockage F90 (El90) distinct et équipé d'une porte T30 (El30) est requis. Dans le cadre de l'amendement à la loi relative aux constructions, il est possible de stocker jusqu'à 10 tonnes de pellets dans la chaufferie dans certains länder.

En Suisse, le stockage de 10 m³ max. de bois dans des chaufferies séparées (El60) est autorisé, une distance de 1 m par rapport à la chaudière devant être observée. Pour les quantités plus importantes, un silo de stockage distinct est nécessaire (El60 séparé du bâtiment), le bois pouvant être stocké conjointement avec la paille ou le foin.

93303-004

Sécurité 6

6.1 Remarques générales

Utilisation uniquement par des personnes instruites

ATTENTION!

Risque de blessure

Blessures et endommagements à cause d'une utilisation incorrecte.

- Seules des personnes majeures instruites sont habilitées à opérer le produit. Cela s'applique en particulier à tous les travaux qui sont nécessaires dans le cadre du fonctionnement. L'instruction peut être effectuée par un chauffagiste ou notre service clientèle. Lisez attentivement la documentation correspondante afin d'éviter les erreurs de commande et d'entretien.
- Seules les personnes autorisées sont habilitées à procéder au fonctionnement. Il est interdit aux personnes non autorisées de séjourner près de l'installation ou dans la chaufferie.
- Avant le début d'une activité, désactivez impérativement l'installation sur toutes les bornes et tous les côtés et sécurisez l'installation contre toute réactivation, puis contrôlez l'absence de toute tension sur l'installation.
- Les personnes insuffisamment expérimentées ou ne disposant pas des connaissances spécialisées ainsi que les enfants, ne sont pas autorisés à utiliser, nettoyer ou entretenir le produit.

Extincteur placé à un endroit visible

En Autriche, un extincteur à poudre ABC de 6 kg minimum est exigé. Il est préférable d'opter pour un extincteur à mousse AB de 9 litres, qui limite les dégâts lors de l'extinction. L'extincteur doit être visible à l'extérieur de la chaufferie et conservé dans un endroit facile d'accès. Même lorsque l'extincteur n'est pas rendu obligatoire par la réglementation en vigueur, nous recommandons de disposer d'un extincteur dans le bâtiment.

Fig. 6-1: Extincteur

Stockage des cendres

Les cendres pour refroidir, doivent être conservées dans des récipients ininflammables fermés par un couvercle. Ne jamais jeter des cendres chaudes dans la poubelle!

6.2 Dispositifs de sécurité

Fonctionnement de la pompe de sécurité, évacuation de chaleur automatique en cas de température excessive

Si, pour une raison quelconque, la température de la chaudière augmente jusqu'à une valeur supérieure à 87 °C (réglage par défaut), le fonctionnement de la pompe de sécurité démarre. Toutes les pompes de chauffage et de la chaudière raccordées à la régulation de chaudière sont alors activées afin d'évacuer la chaleur de la chaudière.

Cette mesure empêche toute augmentation supplémentaire de la température de la chaudière et permet d'éviter le déclenchement des autres dispositifs de sécurité, comme par ex. le limiteur de température de sécurité (STB) et la soupape thermique.

L'évacuation de chaleur est limitée par la température de départ maximale réglée dans les circuits de chauffage et par la température de consigne de l'eau chaude sanitaire.

Température excessive de la chaudière

Si la température de la chaudière atteint 90 °C, la régulation désactive le ventilateur d'extraction des gaz de combustion et un message d'avertissement apparaît à l'écran.

La température de la chaudière augmente pour les raisons suivantes:

- trop de bois mis dans la trémie de combustible
- les circuits de chauffage ont été désactivés de manière inattendue
- une pompe de chauffage a une défaillance
- une conduite de chauffage a été verrouillée par inadvertance

Lorsque la température de la chaudière passe en dessous de 86 °C, le mode de chauffe est automatiquement repris.

Lors de ces arrêts d'urgence, le bois continue de gazer et le gaz de bois non brûlé brûle la chaudière et la

Installer une soupape thermique de sécurité contre les surchauffes

L'installateur-chauffagiste doit raccorder l'échangeur de chaleur de sécurité monté dans la chaudière au circuit d'eau froide de la maison au moyen d'une soupape thermique pour protéger la chaudière contre une surchauffe en cas de panne de la pompe. La pression minimale dans la conduite d'eau froide doit atteindre 2 bar et ne doit pas dépasser une température de 15 °C.

Fig. 6-2: Soupape thermique

Installer uniquement des soupapes thermiques conformes à la norme DIN EN 14597 (ou comparable). Elles doivent réagir à 100 °C et garantir un débit min. de 2,0 m³/h. La section nominale du départ d'eau froide et du retour ne doit pas dépasser vers le bas la section nominale de l'échangeur de chaleur de sécurité.

L'alimentation en eau froide doit être raccordée au raccord supérieur de l'échangeur de chaleur de sécurité, le raccord inférieur étant raccordé à l'évacuation vers le canal. Pour éviter toute fermeture involontaire de la conduite d'arrivée, retirer le levier des robinets à boisseau sphérique ou l'actionneur (roue) des vannes et les accrocher sur le robinet avec un bout de fil.

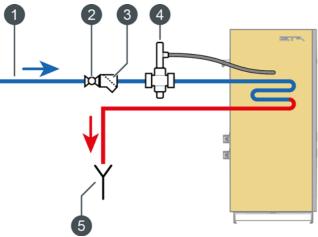


Fig. 6-3: Installation sur la chaudière

- 1 Raccordement d'eau froide
- 2 Retirer la vanne d'isolement et la roue
- 3 Filtre
- 4 Soupape thermique
- 5 Évacuation visible vers le canal

La conduite d'écoulement doit présenter une ligne d'évacuation visible pour pouvoir détecter les dysfonctionnements. L'eau doit être évacuée vers le canal au moyen d'un entonnoir siphon ou au moins vers le sol à l'aide d'un tuyau, de manière à ce que personne ne soit ébouillanté lors de l'activation de la soupape.

Une soupape thermique doit également être installée sur la chaudière pour l'eau froide issue d'un puits privé avec pompe séparée. Même en cas de panne de courant, la quantité d'eau de refroidissement sera suffisante pour les réservoirs d'air de larges dimensions. Si l'alimentation en courant n'est pas d'une très grande fiabi lité, il est nécessaire de monter un réservoir d'air séparé po ur la soupape thermique.

Désactivation par le contacteur de sécurité thermique (STB)

La chaudière dispose d'une sécurité antisurchauffe supplémentaire sous la forme d'un contacteur de sécurité thermique (STB) qui verrouille le ventilateur d'extraction des gaz de combustion lorsqu'une température de chaudière de 106 °C (tolérance +0°/-6 °C) est atteinte, afin qu'il ne puisse plus être activé. Lorsque la température retombe en dessous de 70 °C, le contacteur de sécurité thermique peut alors être déverrouillé manuellement pour un redémarrage de la chaudière. Dévisser à cet effet le capuchon et appuyer sur le bouton qui se trouve en dessous.

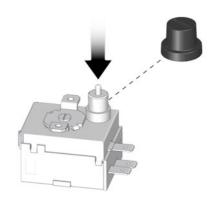


Fig. 6-4: Déverrouiller le contacteur de sécurité thermique

Installation d'une soupape de sécurité de surpression

Une soupape de sécurité dotée d'une pression de tarage de 3 bar doit être installée sur la chaudière. Chaque générateur de chaleur d'une installation de chauffage doit être protégé par au moins une soupape de sécurité afin d'empêcher tout dépassement de la pression de service maximale (voir EN 12828). Elle(s) doi(vent)t être conçue(s) de manière à ne pas dépasser la pression de service maximale autorisée pouvant être produite par l'installation de chauffage ou ses

composants. La soupape de sécurité doit se situer dans la chaufferie ou sur le lieu d'installation à un endroit facile d'accès.

Fig. 6-5: Soupape de sécurité

↑ DANGER!

Aucun dispositif d'arrêt, filtre ou équipement équivalent ne doit être monté entre la chaudière et la soupape de sécurité.

Le diamètre de raccordement de la soupape de sécurité est déterminé en fonction de la puissance calorifique de l'installation de chauffage, conformément au tableau.

Dimensions de la sou- pape ^a Diamètre nominal (DN)	Puissance calorifique max. (kW)
Biametre nominar (Bit)	
15 (G ½)	50
20 (G ¾)	100
25 (G 1)	200
32 (G 1 ¼)	300
40 (G 1 ½)	600
50 (G 2)	900

a. Les dimensions du raccordement d'entrée sont utilisées pour déterminer les dimensions de la soupape.

La soupape de sécurité doit être installée au point le plus haut du générateur de chaleur ou sur la sonde de départ, à proximité du générateur de chaleur. C'est la seule méthode permettant d'évacuer la chaleur par soufflage d'eau chaude et de vapeur.

La soupape de sécurité peut être montée dans n'importe quelle position ; cependant, la partie supérieure de la soupape ne doit pas être orientée vers le bas. La conduite d'alimentation doit présenter une longueur maximale de 1 m et être installée en ligne droite avec un diamètre nominal correspondant à l'entrée de la soupape.

♠ DANGER!

Conduite d'écoulement de la soupape de sécurité

La conduite d'écoulement de la soupape de sécurité doit être reliée au sol par un tuyau, de manière à ce que personne ne soit blessé par le soufflage d'eau chaude ou de vapeur.

La conduite d'écoulement de la soupape de sécurité (conduite de purge) doit être installée de manière à obtenir une pente continue avec un diamètre nominal correspondant au moins à la sortie de la soupape et être reliée à un système d'évacuation des eaux usées (p. ex. canalisation). La conduite de purge doit posséder au maximum 2 coudes et présenter une longueur de 2 m. Si une longueur supérieure à 2 m est requise, la conduite doit être agrandie d'une dimension. Les conduites possédant plus de 3 coudes et une longueur

supérieure à 4 m ne sont pas autorisées. L'orifice de la conduite de purge doit pouvoir être contrôlé et positionné de manière à ne mettre personne en danger. En cas d'utilisation d'un entonnoir pour l'évacuation de la conduite de purge, sa conduite d'écoulement doit présenter une section au moins deux fois supérieure à celle de l'entrée de la soupape.

7 Remarques relatives au montage

7.1 Cheminée

7.1.1 Conception et exécution

Diamètre requis pour la cheminée

Veuillez noter que les sections de cheminée importantes habituellement utilisées jusqu'ici pour le combustible solide ne sont plus optimales en cas de fonctionnement à puissance partielle avec des températures des fumées plus basses. Avec une section trop importante, les fumées ne sortent plus de la cheminée par le haut et risquent de retomber le long du toit jusqu'aux fenêtres des appartements.

Le tuyau d'évacuation des fumées de la chaudière vers la cheminée doit être conforme aux prescriptions dans le tableau. Un tuyau d'évacuation des fumées de 2 m de long et présentant deux coudes à 90° a été pris pour le calcul.

Exemple: SH 20 équipée d'une cheminée de 9 m de haut et d'un tuyau d'évacuation des fumées DN150 => une cheminée avec un diamètre de 15 cm est requise. Dans le cas d'une cheminée de 14 cm de diamètre, il est également possible d'utiliser en alternative un tube de fumée de DN130.

i

Il est interdit d'utiliser ici une section décroissante, c'est-à-dire, par exemple, un tube de fumée DN150 avec une cheminée de 13 cm de diamètre.

Diamètre du tube de fumée de la	Hauteur de la cheminée	Diamètre requis de	la cheminée en cm
chaudière vers la cheminée	par rapport au sol dans l a chaufferie	SH 20	SH 30
DN 130	6 m	14	14
DN 150		15	15
DN 130	7 m	14	14
DN 150		15	15
DN 130	8 m	14	14
DN 150		15	15
DN 130	9 m	14	14
DN 150		15	15
DN 130	10 m	13	13
DN 150		15	15
DN 130	11 m	13	13
DN 150		15	15
DN 130	12 m	13	13
DN 150		15	15
DN 130	13 m	13	13
DN 150		15	15
DN 130	14 m	13	13
DN 150		15	15

Diamètre du tuyau d'évacuation	Hauteur de la cheminée	Diamètre requis de la cheminée en cm				
des fumées de la chaudière vers la cheminée	par rapport au sol dans l a chaufferie	SH 32	SH 40	SH 50	SH 60	
DN 150	6 m	18	18	20	20	
DN 180		18	18	20	20	
DN 150	7 m	16	16	18	20	
DN 180		18	18	18	20	
DN 150	8 m	16	16	18	18	
DN 180		18	18	18	18	
DN 150	9 m	15	15	16	18	
DN 180		18	18	18	18	
DN 150	10 m	15	15	15	16	
DN 180		18	18	18	18	
DN 150	11 m	15	15	15	16	
DN 180		18	18	18	18	
DN 150	12 m	15	15	15	15	
DN 180		18	18	18	18	

Diamètre du tuyau d'évacuation	Hauteur de la cheminée	Diamètre requis de la cheminée en cm				
des fumées de la chaudière vers la cheminée	par rapport au sol dans l a chaufferie	SH 32	SH 40	SH 50	SH 60	
DN 150	13 m	15	15	15	15	
DN 180		18	18	18	18	
DN 150	14 m	15	15	15	15	
DN 180	14 111	18	18	18	18	

Certification par le ramoneur

Le dimensionnement et l'adéquation, en particulier pour les cheminées existantes, doivent dans tous les cas être clarifiés par un spécialiste, un ramoneur ou un chauffagiste avant l'installation de la chaudière.

DANGER!

À chaque chaudière sa propre cheminée

Fondamentalement, nous recommandons pour chaque chaudière sa propre cheminée afin d'évacuer les gaz de fumée vers l'extérieur en toute sécurité quel que soit l'état de service de la chaudière. Ils ne pourront ainsi pas pénétrer par exemple dans les pièces d'habitation en passant par le tube de fumée d'une autre chaudière. S'il n'y a pas de possibilité d'avoir une propre cheminée pour la chaudière, il est possible de raccorder deux chaudières à air pulsé à une cheminée commune, à condition de les dimensionner correctement. Dans ce cas, nous recommandons pour chaque chaudière sa propre conduite de connexion avec des raccords séparés à la chaudière.

DANGER!

Ne pas raccorder la chaudière à ventilation et la chaudière à gaz sur la même cheminée

Les chaudières à gaz étant généralement dépourvues d'un clapet d'aération étanche, les fumées émises par la chaudière à gaz sont refoulées dans la chaufferie lorsque la chaudière à ventilation démarre alors que la cheminée est froide. De même, un clapet de fumées monté dans le tuyau d'évacuation des fumées de la chaudière à gaz n'est pas d'une grande aide, car ces clapets ne ferment pas hermétiquement.

Avec les chaudières à gaz atmosphériques, seul l'orifice de trop-plein de la chaudière permet aux cheminées anciennes en argile de rester sèches. L'eau présente dans les fumées se condense dans la cheminée. Entre les phases de chauffage, l'air s'écoule par l'orifice de trop-plein et sèche la cheminée. Si ce flux d'air est bloqué par un clapet de fumées, une cheminée ancienne en argile risque d'être détruite par l'humidité.

DANGER!

Ne pas raccorder la chaudière à ventilation et le poêle à bois sur la même cheminée

Même si elle n'est pas interdite explicitement, la combinaison chaudière à ventilation/poêle à bois sur la même cheminée reste dangereuse. Chaque poêle à bois dispose d'une arrivée d'air, par laquelle la chaudière à ventilation, qu'elle soit à huile ou à gaz, souffle les fumées dans les pièces d'habitation lorsque la cheminée est froide. Si les portes du foyer

du poêle à bois ne sont pas fermées alors que la chaudière est défectueuse, il existe un risque d'intoxication aiguë au monoxyde de carbone.

Le poêle à bois nécessite une section de cheminée beaucoup plus importante et ne pouvant pas être chauffée par la chaudière à ventilation. Par ailleurs, il est possible que le bruit du ventilateur de la chaudière se propage dans la pièce d'habitation via le poêle à bois.

Cheminée inappropriée en raison de réglementations obsolètes

Les lois et les règlements imposent l'installation d'un système d'évacuation des fumées capable de résister aux feux de suie pour les combustibles solides et insensible à l'humidité pour l'huile et le gaz.

Le bois est un combustible solide. Cependant, la température des fumées peut chuter en dessous de 100°C et de la condensation peut se former dans la cheminée dans des plages de puissances inférieures. La cheminée doit par conséquent être insensible à l'humidité, contrairement à ce que les réglementations stipulent. Si l'on construit une chaudière résistante aux feux de suie conformément aux dispositions légales, on peut voir comment l'eau de condensation détruit la chemise de cheminée (enveloppe de la cheminée).

Les feux de suie surviennent avec les chaudières à tirage naturel ou les poêles à bois régulés par étranglement d'air. Lorsque la chaudière atteint sa température alors que le bois brûle, le clapet d'aération est fermé par un thermostat. La combustion est alors arrêtée. La température du foyer ne diminuant pas, le bois continue à produire du gaz. Le gaz de bois non consumé se condense dans la cheminée sous forme de goudron, susceptible de s'enflammer en raison des projections d'étincelles.

Sur une chaudière à bois moderne régulée par sondes lambda, les feux de suie de ce type sont quasiment impossibles car la régulation s'effectue par étranglement des gaz de bois et non de l'air. Sur les chaudières à bois à chargement automatique, la régulation met un terme à la combustion en arrêtant l'alimentation en combustible sans expulser l'air du feu. Il n'y a ainsi aucun manque d'air et la cheminée est exempte de goudron inflammable. On évite également toute source d'ignition susceptible de déclencher un feu de suie en cas de basses températures des fumées sur une chaudière à bois moderne. Le risque de feu de suie sur la cheminée est par conséquent inexistant avec une chaudière à bois moderne correctement entretenue.

Systèmes d'évacuation des fumées W3G insensibles à l'humidité

Depuis 2005, des conduits de cheminée W3G (catégorie conforme à la norme allemande DIN 18160) résistants aux feux de suie et insensibles à l'humidité sont disponibles. Ces cheminées sont autorisées pour tous les combustibles. Les

conduits de cheminée W3G sont généralement équipés de tubes intérieurs en céramique, dont le degré de résistance aux acides permet d'espérer une durée de vie largement supérieure à celle des cheminées métalliques.

Tuyau d'évacuation des fumées installé sur la cheminée court et orienté vers le haut

Le tuyau d'évacuation des fumées installé sur la cheminée doit être court, étanche et orienté vers le haut. Les raccords « esthétiques » composés de plusieurs coudes étagés à angle droit sont inappropriés pour un tuyau d'évacuation des fumées. Pour raccorder la chaudière à la cheminée, la solution optimale consiste à utiliser la conduite la plus courte possible en réduisant au minimum les changements de direction. Le tuyau d'évacuation des fumées de la cheminée doit être parfaitement étanche. Pour les tuyaux à emboîtement sans garniture, utiliser du silicone résistant à la chaleur pour garantir l'étanchéité. Sinon, il y a un risque de générer de la fumée dans la chaufferie lors du chauffage. Le tuyau d'évacuation des fumées installé sur la cheminée doit toujours être orienté vers le haut.

Les tuyaux d'évacuation des fumées de la cheminée doivent être longs et montés horizontalement, avec une section étroite, présenter une isolation supérieure à la moyenne (50 mm et plus). Prévoir des orifices de nettoyage suffisants dans le tuyau d'évacuation des fumées. Si le tuyau d'évacuation des fumées vers la cheminée présente une section importante, cela réduirait la section de cheminée requise lors du calcul. Mais si des cendres se déposent du fait de la lenteur de la vitesse d'écoulement, le tirage de cheminée calculé théoriquement sera alors perdu.

Avec une section de cheminée importante, la longueur développée du tuyau d'évacuation des fumées peut atteindre jusqu'à la moitié de la hauteur réelle de la cheminée (calcul requis).

Raccordement de la cheminée au système d'évacuation des eaux usées

Pour l'évacuation du condensat de la cheminée, un raccordement via siphon à un système d'évacuation des eaux usées (p. ex. canalisation) avec un diamètre nominal de 25 est obligatoire. Le tuyau d'évacuation des eaux résiduelles auquel est raccordé l'écoulement du condensat doit être purgé une fois par an.

Fig. 7-1: Écoulement du condensat

gel.

Lorsque la cheminée se situe contre le mur extérieur (en acier inoxydable, par exemple), il faut garantir un écoulement de l'eau de condensation protégé contre le

Isolation du tuyau d'évacuation des fumées vers la cheminée

Le tube d'évacuation des fumées de la chaudière à la cheminée doit présenter une isolation en laine de roche d'une épaisseur de min. 30 mm, si possible 50 mm, afin d'éviter les pertes de chaleur pouvant entraîner la formation d'eau de condensation.

Réduction de la propagation du bruit d'impact

Ne pas raccorder le tuyau d'évacuation des fumées de façon fixe à la cheminée afin d'éviter, dans la mesure du possible, une propagation du bruit d'impact! Les systèmes d'évacuation des fumées de qualité sont munis d'un dispositif de séparation acoustique. Si des tubes d'acier sont raccordés à une cheminée en argile, des bandes en fibre céramique empêchent la propagation du bruit d'impact et protègent le manchon de raccordement en argile contre tout dommage éventuel.

Orifice de nettoyage dans le tube d'évacuation des fumées

Des orifices de nettoyage facilement accessibles doivent être disponibles pour procéder au nettoyage du tuyau d'évacuation des fumées.

Fig. 7-2: Orifice de nettoyage

Placer le raccord de cheminée juste en dessous du plafond

Placez le raccord de cheminée juste en dessous du plafond, même si la chaudière est raccordée très bas à la cheminée. Le tuyau d'évacuation des fumées est facile à monter et le tube de raccordement vertical est d'une longueur suffisante pour la mesure des émissions.

Un deuxième raccord de cheminée en dessous du premier permet d'installer facilement un modérateur de tirage, si nécessaire.

Orifice de mesure pour la mesure des émissions

Pour la mesure des émissions, il est nécessaire de réaliser un orifice de mesure étanche et à auto-verrouillage dans la conduite des gaz de fumée. Cet orifice de mesure doit être réalisé sur la base des directives nationales.

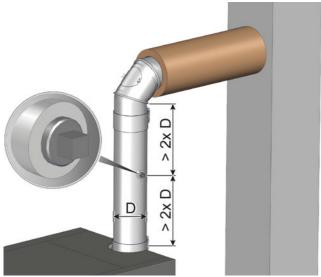


Fig. 7-3: Orifice de mesure

L'orifice de mesure doit être réalisé dans la partie verticale de la conduite des gaz de fumée. Avant et après l'orifice de mesure, prévoir une longueur suffisante de conduite rectiligne des gaz de fumée afin d'éviter que des turbulences faussent les résultats de mesure. La distance jusqu'au raccordement de la conduite de fumée de la chaudière ou le coude de la conduite doit être au moins égale au double du diamètre de la conduite des fumées.

Clapet anti-explosion

La régulation de la chaudière est équipée de programmes de sécurité afin d'empêcher toute explosion. Jusqu'à une puissance de chaudière de 50 kW, il n'est donc pas nécessaire d'installer un clapet anti-explosion si le tube d'évacuation des fumées est court et acheminé vers le haut jusqu'à la cheminée.

Fig. 7-4: Exemple : clapet anti-explosion avec modérateur de tirage

À partir d'une puissance de chaudière de 60 kW, l'installation d'un clapet anti-explosion est recommandée. En raison du potentiel de risque augmenté sur les grands systèmes de combustion, à partir d'une puissance de chaudière de 100 kW, l'installation d'un clapet anti-explosion est nécessaire.

Pour les points hauts en amont des sections de chute ou au début d'une longue section horizontale (L > 20 x D), un clapet anti-explosion est nécessaire indépendamment de la puissance de la chaudière.

DANGER!

Position du clapet anti-explosion

 Le clapet anti-explosion doit être placé de manière à ne blesser personne.

7.1.2 Assainissement

Assainissement de la cheminée, avant qu'il ne soit trop tard

Comparativement aux modèles anciens, les chaudières modernes ont un rendement élevé, grâce auquel les fumées sont produites en quantités plus faibles et à des températures plus basses.

Les cheminées dont le diamètre est trop large, en particulier, ne sont plus suffisamment chauffées. L'eau contenue dans les fumées se condense dans la cheminée et détruit les cheminées maçonnées, de façon lente mais irrémédiable.

De plus, si le diamètre de la cheminée est trop élevé, la vitesse de sortie et la température seront faibles. Les fumées ne disposent alors pas de l'énergie requise pour être évacuées par le haut et peuvent, dans des cas extrêmes, retomber le long du toit.

Si votre cheminée n'est pas équipée d'un revêtement insensible à l'humidité ou si son diamètre est trop élevé, il est alors nécessaire de procéder à un assainissement avec un tube intérieur insensible à l'humidité. Un assainissement avec des tubes en inox est également possible dans les cheminées étroites.

Tenez compte du fait que la durée de vie des cheminées est limitée. Un assainissement avec insert peut être effectué rapidement et facilement si la paroi de la cheminée n'est pas encore détruite. Dès que le condensat des fumées pénètre dans les joints de mortier, nettoyez complètement la cheminée et remontez-la.

Assainissement de la cheminée avec tube en inox

Il est possible qu'une cheminée fonctionnant à l'huile et au gaz ait déjà été assainie à l'aide d'un tube intérieur en acier inoxydable et doive maintenant être convertie en foyer à bois ou à pellets. Il se peut également que la cheminée soit trop étroite pour permettre l'installation sécurisée d'un tube en parfaitement céramique de manière étanche. Pour les tubes intérieurs insensibles à l'humidité montés da ns un manteau de cheminée présentant une résistance au f eu suffisante, la Bundesverband des Schornsteinfegerhand werkes (Fédération allemande des ramoneurs) a trouvé l'is sue suivante au dilemme posé par les différentes normes et réglementations : « le certificat d'aptitude et de bon fonctionnement des installations de combustion doit mentionner le fait qu'après un feu de suie, la durabilité de l'installation ne peut être garantie ou qu'une pénétration d'humidité dans la cheminée ne peut être exclue, et que, le cas échéant, le tube intérieur doit être changé. » (critères d'évaluation de l'aptitude et du bon fonctionnement des installations de combustion - 29/10/2008 page 12).

Remplacement du tube intérieur et des joints après un feu de cheminée

La chaudière est équipée de routines de sécurité pour empêcher les feux de cheminée. Il est cependant possible, dans des cas très rares, qu'un feu de cheminée se déclare malgré tout. Ensuite, il est extrêmement probable que le tube intérieur du conduit de cheminée, ainsi que le tube de fumée allant de la chaudière au conduit de cheminée ne soient plus

Pour plus de sécurité, faites contrôler le conduite de cheminée par un spécialiste comme un ramoneur. De même, le tube intérieur doit être échangé, ainsi que les fumée joints l'intérieur dи tube allant de la chaudière au conduit de cheminée.

7.2 Remarques générales

Autorisation

Chaque installation de chauffage doit bénéficier d'une autorisation. Pour cela, renseignez-vous auprès des autorités compétentes en matière de construction et du ramoneur.

antigel

Si le bâtiment reste inhabité l'hiver pendant une période prolongée, il est possible d'ajouter jusqu'à 30% de protection antigel dans l'eau de chauffage. Pour pallier à l'inconvénient d'avoir une capacité calorifique réduite et une résistance à l'écoulement accrue, seules des températures de départ légèrement supérieures sont requises.

Isolation des sondes d'applique

Si la conduite située dans la zone d'une sonde de température d'applique ne dispose pas d'une isolation thermique (par ex. dans les groupes de circuits de chauffage installés en extérieur), les températures mesurées seront inférieures aux températures réelles. C'est pourquoi il est impératif de ne jamais oublier l'isolation des tuyaux ni d'en réduire l'efficacité pour les sondes de départ des circuits de chauffage. Dans les tuyauteries non isolées, la zone de mesure doit posséder une isolation en laine de roche de min. 20 mm d'épaisseur sur une longueur de tuyau min. de 20 cm.

Recyclage retour

Le bois contient de l'eau. Si la température de la chaudière est trop basse, la vapeur d'eau du gaz de fumée se condense sur les surfaces de l'échangeur de chaleur, ce qui provoque de la corrosion et des fuites sur l'échangeur de chaleur. Pour empêcher ce phénomène, la température min. de l'eau à l'entrée de la chaudière doit être de 60°C. Les températures de retour étant généralement plus basses, un dispositif de recyclage retour avec vanne mélangeuse est alors nécessaire afin de mélanger de manière contrôlée une eau de départ chaude à l'eau de retour de la chaudière.

La vanne mélangeuse permet également d'utiliser la chaleur résiduelle. Si le bas de l'accumulateur est plus froid que la chaudière une fois le feu éteint, la régulation de la chaudière ouvre à nouveau la vanne mélangeuse et met en marche la pompe de la chaudière afin d'utiliser la chaleur résiduelle.

7.3 Eau chauffage

Propriétés de l'eau de chauffage

L'eau de chauffage doit satisfaire les normes nationales spécifiques (ÖNORM H 5195-1, VDI 2035) relatives à ses caractéristiques physiques et chimiques (conductance, valeur de pH, dureté, teneur en oxygène) et faire l'objet de contrôles réguliers. Posez la question à votre chauffagiste.

7.3.1 Dureté de l'eau

Détermination de la dureté d'eau admissible de l'eau de chauffage selon ÖNORM H 5195-1

		Tableau 1			Tableau 2		
		Générateur de chaleur de grande capa- cité d'eau (> 0,3 l/kW)			Générateur de chaleur de petite capa- cité d'eau (≤ 0,3 l/kW)		
Capacité d'eau spécifique (litre/kW)		< 20 l/kW	≥ 20 /kW < 50 l/kW	≥ 50 l/kW	< 20 l/kW	≥ 20 l/kW < 50 l/kW	≥ 50 l/kW
Puissance totale du géné- rateur de chaleur	≤ 50 kW	16,8 °dH	11,2 °dH	5,6 °dH	11,2 °dH	5,6 °dH	0,6 °dH
	> 50 kW ≤ 200 kW	11,2 °dH	5,6 °dH	2,8 °dH	5,6 °dH	2,8 °dH	0,6 °dH
	> 200 kW ≤ 600 kW	5,6 °dH	2,8 °dH	0,6 °dH	2,8 °dH	0,6 °dH	0,6 °dH
	> 600 kW	2,8 °dH	0,6 °dH	0,6 °dH	0,6 °dH	0,6 °dH	0,6 °dH

Instructions de détermination :

- Déterminer la capacité d'eau (en litres) du générateur de chaleur et la diviser par sa puissance (en kW). Si le résultat est supérieur à 0,3 l/kW, le tableau 1 s'applique. Si la valeur est inférieure ou égale à 0,3 l/kW, le tableau 2 s'applique.
- Le volume total d'eau de chauffage (en litres) doit ensuite être divisé par la puissance (en kW) du plus petit générateur de chaleur. Le résultat est la capacité d'eau spécifique qui détermine l'écart dans le tableau cité précédemment.
- À l'aide de la puissance totale du générateur de chaleur, lire la valeur de la dureté d'eau admissible à la ligne correspondante.

Exemple : une installation de chauffage avec une chaudière de 45 kW et un volume total d'eau de chauffage de 1500 litres.

- Le rapport entre la capacité et la puissance est supérieur à 0,3 l/kW (117:45=2,6) => Tableau 1.
- 2. La capacité spécifique est de 33,3 l/kW (1500:45=33,3) => colonne du milieu du tableau 1.
- 3. La puissance totale de la chaudière est de 45 kW c'est pourquoi seules les valeurs de la première ligne sont signficatives (≤ 50 kW).
- Dans cet exemple, la dureté autorisée de l'eau est de 11,2 °dH.

Adoucissement à l'aide d'échangeurs d'ions régénérés avec du sel

Nous recommandons d'adoucir l'eau à l'aide d'échangeurs d'ions régénérés avec du sel, de la même manière que pour l'adoucissement de l'eau potable. Cette méthode n'élimine pas le sel de l'eau. Elle remplace le calcium présent dans le tartre par le sodium contenu dans le sel de cuisine. Cette méthode présente des avantages majeurs. Elle est économique et chimiquement stable contre les impuretés. Elle offre par ailleurs une alcalinité naturelle, qui se traduit généralement par une valeur pH située sur une plage de 8 offrant une protection suffisante contre la corrosion.

Injecter si nécessaire du phosphate trisodique pour une valeur pH comprise entre 8 et 9

Si, après une semaine d'application dans l'eau de chauffage, une valeur pH de 8 ne se règle pas d'elle-même, augmentez-la en ajoutant 10 g/m³ de phosphate trisodique (Na $_3$ PO $_4$) ou 25 g/m³ de phosphate trisodique lié à de l'eau de cristallisation (Na $_3$ PO $_4$.12H $_2$ O). Attendez 2-4 semaines d'utilisation avant de procéder à d'éventuelles corrections ! La valeur pH ne doit pas être supérieure à 9.

Pas d'installations de mélange

La teneur en sel à forte conductivité électrique constitue un inconvénient lors de l'échange d'ions régénérés avec du sel, car elle provoque la corrosion électrolytique de l'aluminium ou de l'acier galvanisé. Si les éléments montés dans l'installation de chauffage sont uniquement en acier, en laiton, en bronze industriel et en cuivre et si la part d'inox reste limitée à une petite surface, aucun problème de corrosion n'est à prévoir avec une eau salée.

Les pièces individuelles en aluminium et les pièces galvanisées dans une installation de chauffage présentent toujours un risque de corrosion, particulièrement si elles sont associées à des tubes en cuivre. Dans la pratique, cela interdit l'usage de raccords galvanisés à chaud, ainsi que le mélange de tubes galvanisés avec des tubes en cuivre. Il existe toutefois une exception, qui peut sembler illogique : les tubes d'acier galvanisés associés à des chaudières ou ballons tampons en acier. La couche de zinc est probablement usinée uniformément et répartie de manière égale dans le système sans entraîner de corrosion perforante.

Le dessalement complet n'est pas nécessaire

Si le système ne contient pas d'aluminium (échangeurs thermiques en aluminium dans le chauffe-eau gaz ou radiateurs en aluminium), vous pouvez faire l'économie d'un dessalement complet à l'aide de cartouches échangeuses d'ions ou par osmose.

La stabilisation du tartre peut être dangereuse

L'ajout d'agents de stabilisation du tartre empêche les dépôts de tartre. Il est néanmoins déconseillé de le faire. Ces inhibiteurs augmentent la teneur en sel et génèrent une valeur pH indéfinie. Lors de l'appoint de quantités d'eau importantes, il est impératif d'utiliser exactement le même agent. Le mélange avec d'autres additifs d'eau ou avec la protection antigel peut de provoquer de la corrosion.

7.3.2 Corrosion

Protection de démarrage à l'aide d'inhibiteurs de corrosion

Ces agents recouvrent d'un film protecteur les nouvelles surfaces internes encore nues. Cette opération n'est possible que dans une nouvelle installation. Si des poches de corrosion se sont déjà formées, ces agents ne sont plus d'aucune aide. Utilisez les inhibiteurs de corrosion avec parcimonie.

Sur les installations dont les accumulateurs présentent un volume d'eau élevé par rapport aux surfaces internes, il est préférable de doser la moitié des quantités indiquées par le fabricant plutôt que le double.

Montage d'un séparateur de magnétite et de boues

Pour maintenir la qualité de l'eau de chauffage et éviter les dépôts, et ainsi des détériorations des composants sensibles, il est recommandé de procéder au montage d'un séparateur de magnétite et de boues dans le retour de l'installation de chauffage.

Fig. 7-5: Séparateur de magnétite et de boues

Il est obligatoire de procéder à la maintenance d'un séparateur de magnétite et de boues au minimum une fois par an. Posez la question à votre chauffagiste.

7.3.3 Aération

Protection contre la corrosion atmosphérique

Pour protéger l'ensemble de l'installation de chauffage contre la corrosion, l'infiltration d'air doit être réduite au minimum et l'air infiltré doit être évacué du système le plus rapidement possible.

Purge d'air au point le plus haut dans la sonde de départ

Aucun système n'est parfaitement hermétique. L'air qui s'est infiltré dans l'installation de chauffage est transporté de la conduite de retour à la chaudière, car l'eau peut absorber une quantité d'air croissante à mesure qu'elle refroidit et que la pression augmente. L'air est ensuite libéré au point de l'installation présentant la température la plus élevée et la pression la plus faible. Les deux points de dégazage types sont la chaudière lorsque celle-ci est chaude et le point le plus haut de la conduite de départ de l'installation de chauffage.

Un purgeur doit être monté immédiatement sur l'extrémité supérieure de la conduite de sortie de la chaudière (il est déjà installé sur les chaudières PelletsUnit et PelletsCompact), ainsi que sur le point le plus haut de la sonde départ de l'installation.

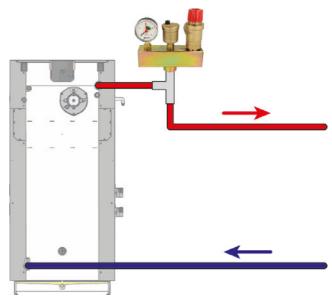
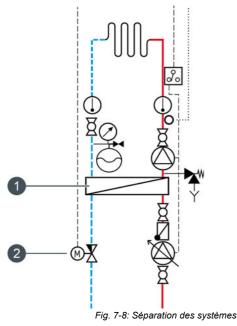


Fig. 7-6: Position correcte de la purge d'air

La pièce en T pour la purge d'air doit être du même diamètre que le branchement de départ de la chaudière, afin qu'aucune poche d'air ne puisse se former. De même, la chaudière doit être positionnée à l'horizontale ou former une légère pente vers le raccordement de départ de la chaudière, afin que la purge d'air se fasse correctement.

Nous recommandons d'installer dans la sonde de départ en aval de la chaudière un séparateur de microbulles traversé par la totalité de l'eau (Spirovent, Flamco ou Pneumatex sont des fabricants typiques). Cela permet de mieux évacuer l'air du système de chauffage pendant le fonctionnement.


Fig. 7-7: Séparateur de microbulles

Tuyaux en plastique étanches à la diffusion ou séparation des systèmes

Les tuyaux en plastique utilisés doivent présenter une certification conforme à la norme DIN 4726. Celle-ci est en général documentée par un label de test DIN et un numéro d'inscription au registre sur l'inscription du tuyau. Les chauffages par le sol de construction ancienne ne sont souvent pas conformes aux exigences de la norme DIN de 1988. Il faut s'attendre ici à une alimentation notable en oxygène. L'oxygène alimenté peut avoir un effet corrosif sur les composants de l'installation de chauffage. Il est nécessaire ici de séparer le chauffage par le sol déjà existant

de la nouvelle chaudière de chauffage. Bien que les valeurs aient chuté en-dessous des limites inférieure, la somme de l'alimentation en oxygène par le système de chauffage des surfaces, de la répartition, des fuites, des réapprovisionnement etc. peut également provoquer des dommages dus à la corrosion tout particulièrement dans le cas des grandes installations (longueurs de tuyaux de plus de 5 000 m courants). Il est recommandé ici de séparer le système de chauffage des surfaces de la chaudière. Si une détérioration de la chaudière due à l'alimentation en oxygène devait être attestée, tout droit à la garantie des vices cachés et à la garantie est annulé.

- Échangeur de chaleur
- 2 Vanne de régulation

L'encastrement hydraulique correct d'un échangeur de chaleur (que ce soit pour une séparation de systèmes ou comme station de transfert) doit être réalé du côté primaire. Pour obtenir un débit optimal en fonction de la température de départ, il est recommandé d'utiliser une vanne de régulation du débit (voir le graphique ci-dessus). La pompe primaire doit en outre être régulée avec un dispositif de pression différentielle. Un module de séparation de systèmes répondant à ces exigences est disponible auprès d'ETA.

Fig. 7-9: Module de séparation de systèmes ETA

Pas de vases d'expansion ouverts

Les vases d'expansion ouverts favorisent l'intrusion d'air dans l'installation. Les installations existantes avec des vases d'expansion ouverts doivent être transformées, ou séparées de la chaudière par l'intermédiaire d'un dispositif de séparation.

Les accumulateurs tampon sans pression ne doivent pas être raccordés directement à la chaudière. S'il est impossible de remplacer ces accumulateurs, il faut séparer l'accumulateur sans pression de la chaudière.

7.3.4 Équilibrage de la pression

Un vase d'expansion est nécessaire

Pour équilibrer la pression de l'installation, il est nécessaire de monter un vase d'expansion à membrane dont la capacité brute correspond à env. 10 % du volume de l'installation. Si la différence de pression entre chauffage à froid et chauffage à chaud (avec l'accumulateur complètement chargé, le cas échéant) dépasse 1,0 bar sur une installation de chauffage à un étage ou 0,5 bar sur une installation de chauffage à trois étages, le vase d'expansion est alors trop petit et doit impérativement être remplacé par un vase d'expansion de taille plus importante. Si le vase d'expansion installé ne présente pas des dimensions suffisantes, lors du refroidissement. l'installation aspire l'air absorbé par l'eau froide et transporté vers la chaudière. L'air est ensuite évacué à nouveau de l'eau à l'endroit présentant la température la plus élevée. Généralement dans la chaudière. De la rouille se forme alors inévitablement sur la paroi de la chaudière à l'endroit où se produit la séparation de l'air.

Réglage de la pression amont du vase d'expansion

Les vases d'expansion sont fournis pour la plupart avec une pression amont de 1,5 bar. La pression dans la vessie doit dépasser de 0,3 bar la pression statique sur le lieu d'installation via une purge d'azote, en veillant à ce que la valeur ne soit pas inférieure à 0,9 bar.

- Exemple 1:
 différence de hauteur entre le vase d'expansion et le point le plus haut de l'installation pst = 11 m = 1,1 bar :

 1,1 bar + 0,3 bar = 1,4 bar de pression de réglage.
- Exemple 2 :
 différence de hauteur entre le vase d'expansion et le
 point le plus haut de l'installation pst = 5 m = 0,5 bar :
 0,5 bar + 0,3 bar = 0,8 bar -> 0,9 bar de pression de
 réglage.

Une pression de réglage min. de 0,9 bar doit être sélectionnée ici.

Protéger le vase d'expansion contre les fermetures accidentelles

Tous les dispositifs d'arrêt situés sur le chemin entre le vase d'expansion et la chaudière et sur le chemin conduisant au ballon tampon doivent se présenter sous la forme de vannes à capuchon ou alors il sera nécessaire de démonter la roue ou le levier de ces dispositifs d'arrêt (en les accrochant avec un bout de fil) pour empêcher toute fermeture accidentelle.

7.4 Émission acoustique

Émission acoustique dans l'air

En fonctionnement normal, le niveau d'émission acoustique dans l'air d'une chaudière à pellets ou à bois déchiqueté est compris entre 40 et 50 dBA avec des pics isolés pouvant atteindre 75 dBA (par ex. turbine d'aspiration des pellets).

Pour limiter les émissions acoustiques dans l'air, les mesures suivantes obligatoires pour tous les locaux de chaufferie sont en général suffisantes :

- Portes massives comme les portes anti-incendie prescrites par ailleurs
- Réduction au minimum des orifices d'arrivée d'air, se reporter au tableau <u>Tab. 5-1: "Orifice d'arrivée d'air nécessaire"</u>.
- Insonorisation des planchers des pièces situées audessus du local de chaufferie
- Isolation acoustique supplémentaire du plafond dans la chaufferie pour une protection acoustique des locaux situés au-dessus

Émission de bruits de structure et mesures d'atténua-

Les problèmes d'émissions acoustiques liés à l'utilisation de chaudières à pellets ou à bois déchiqueté viennent principalement des bruits de structure, autrement dit de l'énergie acoustique transmise à la construction. Cette transmission peut se faire depuis tous les composants de l'installation de chauffage (chaudière, extraction du combustible ainsi que local de stockage du combustible et dispositifs de remplissage). C'est pourquoi chaque composant doit être examiné précisément lors du découplage du bruit de structure. Tout particulièrement lorsque les composants sont limitrophes à des zones sensibles telles que par ex. des locaux de formation ou des salles de séjour/chambres à coucher.

La transmission du bruit et l'émission acoustique dépendent pour l'essentiel du corps du bâtiment et de la physique de construction. Si l'installation de chauffage se trouve à côté des chambres à coucher ou des salles de repos, alors les faibles valeurs imposées pour la contrainte acoustique ne pourront avec une grande probabilité par être

respectées. Cela s'applique également à la mise en place de l'installation de chauffage dans les locaux limitrophes qui sont utilisés avec une fréquence supérieure à la moyenne. C'est pourquoi nous déconseillons de mettre en place une installation de chauffage directement à côté de zones ou de locaux sensibles au bruit.

Les sources essentielles d'émission de bruits de structure et les mesures d'atténuation nécessaires sont répertoriées dans ce qui suit.

- Grincements et crissements de la vis de transport : Il est impossible d'éliminer complètement les grincements et craquements de la vis de transport. Le volume sonore peut varier considérablement, en particulier pour le bois déchiqueté, en fonction de la taille de ce dernier, du type de bois (le bois tendre est moins bruyant que le bois dur), de la teneur en fines et de la teneur en eau. Même si cette source d'émissions acoustique est négligeable pour 90 % des installations, si l'on ne prend pas de mesures contre la transmission des bruits d'impact dans la chaudière pour les 10 % d'installations restantes, le seuil de 30 dBA (pour le chauffage d'habitation) peut être franchi dans les pièces avoisinantes de la chaufferie. En guise d'insonorisation, il faut donc envelopper l'auge de la vis de transport dans le passage du mur avec de la laine de roche afin de minimiser la transmission du bruit dans la maçonnerie.
 - Le plancher incliné sur les extractions de bois déchiqueté est un corps de résonance et devrait être évité lorsque des zones ou des locaux sensibles au bruit sont limitrophes au stock de combustible.
- Chapet flottante dans la chaufferie :
 Il convient de poser une chape flottante dans la chaufferie pour découpler la chaudière du bâtiment en matière de technique acoustique. Il est possible d'utiliser en supplément le kit d'isolation acoustique ETA.
- Chape flottante dans le local de stock de combustible :
 Le local de stockage de combustible doit être érigé sur une chape de béton flottante pour découpler l'extraction de combustible du bâtiment en matière de technique acoustique.
- Ne pas appuyer le plancher incliné contre les murs :
 Le plancher incliné, ainsi que la structure d'appui en ellemême, ne doivent cependant pas reposer contre les murs car ces forces puissantes ne peuvent pas être supportées par des murs aux dimensions souvent insuffisantes statiquement. Étancher le transfert du plancher incliné au mur avec de la silicone afin d'éviter tout écoulement de combustible sous le plancher incliné.
- Bruits de cheminée par le ventilateur d'extraction des gaz de combustion :
 - Pour atténuer le bruit de cheminée dû au ventilateur d'extraction des gaz de combustion, on utilise comme dispositif d'insonorisation un encastrement souple (par exemple avec une ficelle en céramique) de la conduite de fumée dans le raccord de cheminée.
- Résonance propre de la cheminée :

La résonance propre d'une cheminée apparaît lorsque la cheminée émet une fréquence déterminée depuis la chaudière (effet de tuyau d'orgue). Comme protection acoustique, il est possible d'utiliser un dispositif supplémentaire d'insonorisation et d'étanchéification des orifices de nettoyage sur les cheminées de maçonnerie.

Des consoles murales supplémentaires pour la fixation à la maçonnerie aident dans le cas d'une cheminée en acier inoxydable.

- Bruits de sortie à l'embouchure de la cheminée :
 Des bruits dérangeants peuvent aussi survenir au niveau de l'embouchure de la cheminée. C'est pourquoi, lors de la construction de la cheminée, placez la hauteur de l'embouchure plus haut que nécessaire afin que la sortie du son se fasse à un endroit plus élevé. En alternative, un silencieux peut également être installé dans le tuyau de raccordement de la chaudière à la cheminée.
 - Une cheminée en acier inoxydable n'atténue que faiblement les bruits de flux du fait de la finesse des parois du tube. C'est pourquoi, sur une cheminée en acier inoxydable, les bruits de sortie sont souvent supérieurs à ceux d'une cheminée avec des tubes en céramique à paroi épaisse.
- Nettoyage de l'échangeur de chaleur de la chaudière :
 Comme dispositif de protection acoustique, on peut bloquer le système de décendrage pendant les heures nocturnes avec le programmateur horaire de la régulation.
- Découpler les installations raccordées :
 - Réaliser l'installation raccordée (départ, retour, sécurité d'écoulement thermique, tuyau de transport des pellets) de manière à minimiser l'introduction du bruit dans la maçonnerie. Utiliser de ce fait des colliers avec un insert isolant (par ex. caoutchouc) et serrer ceux-ci uniquement à la main afin que le caoutchouc atténue. Réduire autant que possible le nombre de fixations ou, si possible, poser les conduites dans des rails de montage au lieu de nombreuses fixations individuelles. Les tubes devant être posés dans des murs doivent être isolés afin de minimiser les transmissions acoustiques dans la maçonnerie.

8 Ballon tampon

8.1 Remarques générales

Vannes thermostatiques étroites pour radiateur et échangeur ECS

Plus la température de retour vers le tampon est basse, plus sa capacité de stockage de calories est élevée. Pour les radiateurs, des vannes thermostatiques étroites à réglage fin (inférieur à 0,35) peuvent être utilisées pour améliorer considérablement l'exploitation de l'accumulateur.

Un échangeur ECS peut permettre d'intégrer la préparation ECS dans le tampon en limitant l'encombrement ; de plus, le raccordement de l'installation solaire dans le tampon est aussi simple qu'efficace.

Dimensions de l'accumulateur pour les installations chargées manuellement

Chaudière à bûches	20 kW	30 kW	40 kW	50 kW	60 kW	
Volume d'accumula- teur recommandé (en litres)	>1 100, 2 000 (opti- mal)		>2 200, 3 000 (optimal)			
Volume d'accumula- teur obligatoire en Allemagne (ordon- nance BimSchV 1)	1 100	1 650	2 200	2 750	3 300	

Tab. 8-1: Dimensionnement de l'accumulateur

Suisse : ordonnance sur la protection de l'air

En Suisse, l'ordonnance sur la protection de l'air impose un volume minimal pour le ballon tampon d'une chaudière. Son calcul est différent selon qu'il s'agisse d'une chaudière à alimentation manuelle ou automatique.

Pour une chaudière alimentée manuellement (p. ex. chaudière à bûches) jusqu'à une puissance calorifique nominale de 500 kW, le volume du ballon tampon doit être de 12 litres pour chaque litre de volume de remplissage de combustible. Le volume maximal est de 55 litres par kW de puissance calorifique nominale.

Ainsi, une chaudière SH30 (trémie de combustible de 150 litres) nécessite un volume minimum de 1800 litres (=150x12) pour le ballon tampon. Une SH60 (trémie de combustible de 22 litres, 223x12=2676 litres) nécessite un volume minimum de 3300 litres (=60x55) pour le ballon tampon.

 Pour une chaudière à alimentation automatique jusqu'à une puissance calorifique nominale maximum de 500 kW, le volume minimum de ballon tampon est de 25 litres par kW.

Ainsi, une chaudière à bois déchiqueté de 100 kW nécessite un ballon tampon de 2500 litres (=100x25) minimum.

Les chaudières à pellets jusqu'à 70 kW de puissance d'allumage ne sont toutefois pas concernées par cette ordonnance.

8.2 Couplage hydraulique

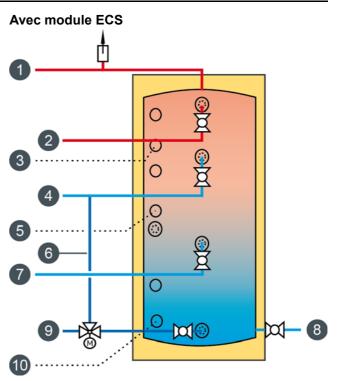
Intégration hydraulique d'un ballon tampon

Pour permettre à l'accumulateur d'atteindre la plus grande capacité de stockage possible et pour bénéficier d'un rendement solaire maximal en hiver, des températures de retour basses doivent être obtenues.

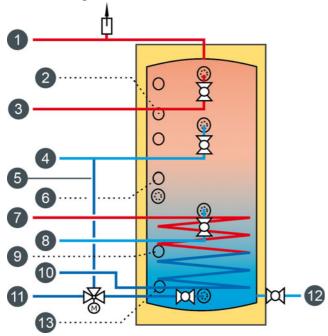
Un accumulateur à stratification, aussi performant soit-il, ne peut plus séparer les circuits mélangés sur le collecteur de chauffage. N'installez aucun collecteur de mélange et raccordez les conduites de retour directement au ballon tampon, en particulier si des circuits de chauffage par le sol ou à radiateurs sont installés dans la maison. La conduite de retour des radiateurs permet d'utiliser encore un plancher chauffant.

Si une installation solaire est raccordée, seules les conduites de retour froides d'un plancher chauffant ou d'un module ECS doivent être insérées dans le tiers inférieur, chauffé à l'énergie solaire, de l'accumulateur. Cela permet aux capteurs de bénéficier de températures de fonctionnement plus basses, avec un degré d'efficacité accru et un rendement solaire largement supérieur.

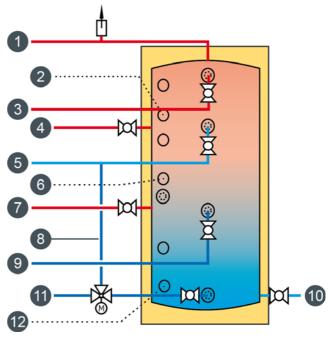
Une chaudière à mazout ou à gaz se raccorde toujours dans la partie supérieure de l'accumulateur.


Pour une chaudière à bûches, un dispositif de délestage au démarrage est recommandé afin d'accélérer la montée en température des pièces.

Des boucles anti-siphon inclinées vers le bas montées sur tous les raccords réduisent les pertes thermiques l'été.


Avec ballon d'ECS 1 2 3 4 5 6 7

- Départ chaudière à bûches, circuits de chauffage, ballon ECS, chaudière mazout/gaz
- 2 Sonde de température [Sonde 1 (en haut)]
- 3 Retour chaudière à mazout/gaz
- 4 Sonde de température [Sonde 2]
- 5 Délestage au démarrage
- 6 Retour ballon ECS
- 7 Retour de la chaudière à bûches, circuits de chauffage
- 8 Sonde de température [Sonde 3]

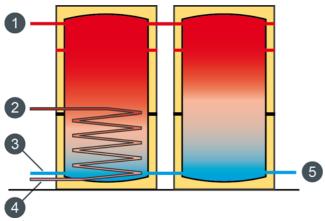

- 1 Sonde de départ de l'échangeur d'ECS
- 2 Sonde de départ de la chaudière à bûches, circuits de chauffage, chaudière à mazout/gaz
- 3 Sonde de température [Sonde 1 (en haut)]
- 4 Retour chaudière à mazout/gaz
- 5 Sonde de température [Sonde 2]
- 6 Délestage au démarrage
- 7 Retour des circuits hautes températures
- 8 Retour module ECS
- 9 Retour de la chaudière à bûches, circuits de chauffage basse température
- 10 Sonde de température [Sonde 3]

Avec échangeur solaire et module ECS

- 1 Sonde de départ de l'échangeur d'ECS
- 2 Sonde de température [Sonde 1 (en haut)]
- 3 Sonde de départ de la chaudière à bûches, circuits de chauffage, chaudière à mazout/gaz
- 4 Retour chaudière à mazout/gaz
- 5 Délestage au démarrage
- 6 Sonde de température [Sonde 2]
- 7 Départ solaire
- 8 Retour des circuits hautes températures
- 9 Sonde de température [Sonde 3]
- 10 Retour solaire
- 11 Retour de la chaudière à bûches, circuits de chauffage basse température
- 12 Retour module ECS
- 13 Sonde de température [Sonde 4]

Avec module de stratification et module ECS

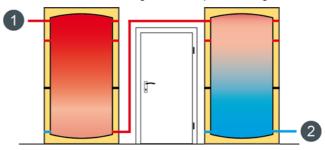
- 1 Sonde de départ de l'échangeur d'ECS
- 2 Sonde de température [Sonde 1 (en haut)]
- 3 Sonde de départ de la chaudière à bûches, circuits de chauffage, chaudière à mazout/gaz
- 4 Départ solaire Haut
- 5 Retour chaudière à mazout/gaz
- 6 Sonde de température [Sonde 2]
- 7 Départ solaire Bas
- 8 Délestage au démarrage
- 9 Retour des circuits hautes températures
- 10 Retour de l'échangeur d'ECS, solaire
- 11 Retour de la chaudière à bûches, circuits de chauffage basse température
- 12 Sonde de température [Sonde 3]



8.3 Raccordement entre plusieurs ballons tampons

Raccordement en parallèle

Lorsque plusieurs accumulateurs sont installés, le raccordement parallèle (haut avec haut et bas avec bas) constitue généralement la meilleure solution. Un raccordement parallèle permet aux échangeurs thermiques installés, tels que les échangeurs solaires ou échangeurs ECS internes tubulaires, ainsi qu'aux ballons ECS suspendus, de disposer de la totalité du volume tampon.


Si deux ballons tampons présentant des dimensions différentes sont raccordés en parallèle, raccordez la conduite de départ sur le ballon le plus haut ou soulevez le ballon le plus bas de manière à pouvoir effectuer le raccordement supérieur horizontalement.

- 1 Conduite montante
- 2 Conduite montante de l'installation solaire
- 3 Retour
- 4 Conduite descendante de l'installation solaire
- 5 Retour

Raccordement en série

Un raccordement en série entre les deux accumulateurs n'offre aucun avantage vis-à-vis d'un raccordement parallèle, mais présente plutôt des inconvénients : en effet, un ballon ECS suspendu ne peut pas prélever de chaleur dans le deuxième accumulateur et un échangeur thermique interne ne peut pas chauffer les deux accumulateurs. C'est pourquoi il est nécessaire d'intégrer une installation solaire pour les accumulateurs raccordés en série, par le biais d'échangeurs thermiques montés dans les deux accumulateurs ou, encore mieux, à l'aide d'un échangeur thermique de charge externe.

- 1 Conduite montante
- 2 Retour

Mis à part quelques rares cas spécifiques, le raccordement en série (ballon 2 haut relié au ballon 1 bas) se limite à contourner des obstacles purement physiques dus à une configuration d'installation donnée. Si l'accès à une porte doit être libéré entre deux accumulateurs ou si la distance entre deux accumulateurs est importante, seul un raccordement en série est possible.

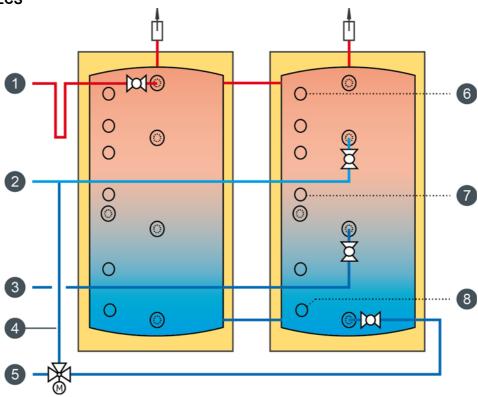
Raccordement Tichelmann pour puissances plus élevées

En cas de raccordement parallèle avec raccordement unilatéral, le volume du deuxième accumulateur est intégré dans le principe du thermosiphon. L'échange entre les deux ballons, provoqué uniquement par la circulation par thermosiphon, est limité par la résistance hydraulique des points de raccordement. Avec des puissances moyennes, un raccordement Tichelmann est par conséquent requis.

Un raccord 6/4" permet un rendement max. de 5 500 l/h pour une perte de charge de 0,25 mCE (pour les deux raccords de départ et de retour). Cela correspond à 130 kW avec un écart de 20 °C. Un tubage externe doit donc être exécuté via un raccordement symétrique ou un raccordement Tichelmann pour les puissances plus élevées.

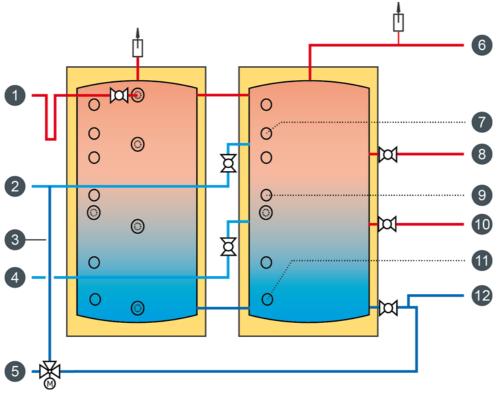
Si plus de deux ballons sont installés, un tubage externe avec raccordement Tichelmann est également requis afin de remplir et de décharger simultanément tous les ballons.

Raccordement parallèle entre plusieurs ballons tampons	Raccords pour accu- mulateur 5/4" DN32	Raccords pour accu- mulateur 6/4" DN40	
raccordement unilatéral	< 25 kW de puissance chaudière max. 2 accu- mulateurs	< 40 kW de puissance chaudière max. 2 accu- mulateurs	
Raccordement Tichelmann interne	< 80 kW de puissance chaudière max. 2 accu- mulateurs	< 130 kW de puissance chaudière max. 2 accu- mulateurs	
Raccordement symétrique	> 80 kW de puissance chaudière max. 2 accu- mulateurs	> 130 kW de puissance chaudière max. 2 accu- mulateurs	
tubage externe avec rac- cordement Tichelmann	> 80 kW de puissance chaudière, et/ou plus de 2 accumulate urs	> 130 kW de puissance chaudière, et/ou plus de 2 accumulate urs	



8.4 Raccordement parallèle d'accumulateur

Raccord parallèle du ballon tampon avec liaison Tichelmann interne


Une liaison Tichelmann interne consiste essentiellement en un passage diagonal. Deux accumulateurs sont raccordés l'un à l'autre en haut et en bas (= raccordement parallèle). Jusqu'à une puissance de 90 kW, un raccord DN32 (kit de raccordement pour accumulateurs ETA) est suffisant, pour une puissance de 30 kW, utiliser au minimum un raccord R1" ou un raccord cuivre 28 mm. Le départ chaudière est raccordé en haut sur un accumulateur, le retour chaudière en bas sur un autre accumulateur. Les conduites de retour présentant d'importants écarts de température doivent être acheminées séparément dans le ballon tampon. Pour réduire au minimum les pertes de circulation dans les tuyaux, il est judicieux de monter une boucle anti-siphon inclinée vers le bas dans les raccords.

Avec ballon d'ECS

- 1 Départ chaudière à bûches, circuits de chauffage, ballon ECS, chaudière mazout/gaz
- 2 Retour de la chaudière à mazout/gaz
- 3 Retour ballon ECS, circuits hautes températures
- 4 Délestage au démarrage
- 5 Retour de la chaudière à bûches, circuits de chauffage basse température
- 6 Sonde de température [Sonde 1 (en haut)]
- 7 Sonde de température [Sonde 2]
- 8 Sonde de température [Sonde 3]

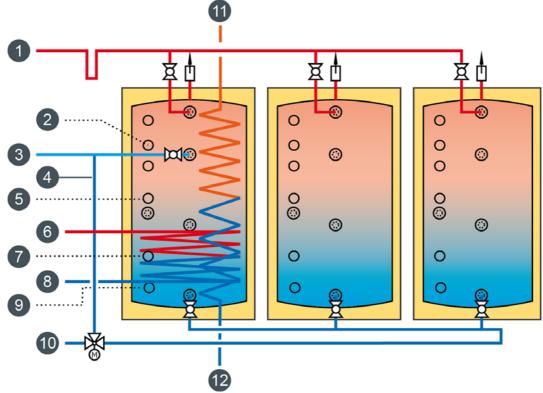
Avec échangeur d'ECS et module de stratification

- Départ chaudière à bûches, circuits de chauffage, chaudière mazout/gaz 1
- 2 Retour de la chaudière à mazout/gaz
- 3 Délestage au démarrage
- Retour des circuits hautes températures 4
- 5 Retour de la chaudière à bûches, circuits de chauffage basse température
- 6 Sonde de départ de l'échangeur d'ECS
- 7 Sonde de température [Sonde 1 (en haut)]
- 8 Départ solaire Haut
- 9 Sonde de température [Sonde 2]
- 10 Conduite montante solaire bas
- Sonde de température [Sonde 3]
- 12 Retour de l'échangeur d'ECS, solaire

Pour que la réserve d'eau chaude sanitaire soit suffisamment importante, les températures de libération des circuits de chauffage doivent dépasser 45 °C.

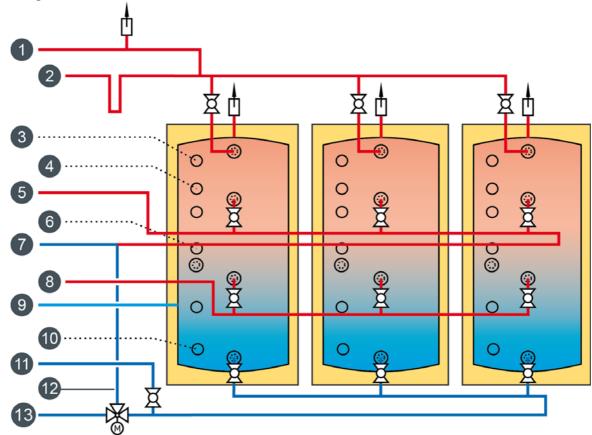
93303-004 39

8.5 Liaison Tichelmann externe


Raccordement parallèle des ballons tampon avec liaison externe Tichelmann

Un raccordement Tichelmann externe consiste essentiellement en un passage parallèle par plusieurs ballons tampon via un raccordement en diagonale des collecteurs. Le dernier ballon tampon sur le collecteur de départ est le premier sur le collecteur de retour. Pour réaliser des processus de charge et de décharge uniformes, il est judicieux d'opter pour des conduites de raccordement au moins une à deux dimensions plus petites que le collecteur. Il n'existe aucune limite de puissance pour ce type de circuit. Pour réduire au minimum les pertes de circulation dans les tuyaux, il est judicieux de monter une boucle anti-siphon inclinée vers le bas dans les raccords.

Pour les petites installations solaires, il est possible de réduire le volume l'été en arrêtant certains ballons tampon.

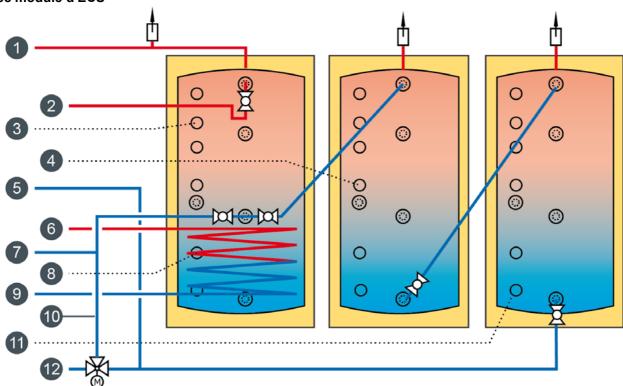

Avec ballon d'ECS ou échangeur d'ECS tubulaire interne

- 1 Départ chaudière à bûches, circuits de chauffage, chaudière mazout/gaz
- 2 Sonde de température [Sonde 1 (en haut)]
- 3 Retour de la chaudière à mazout/gaz
- 4 Délestage au démarrage
- 5 Sonde de température [Sonde 2]
- 6 Départ solaire
- 7 Sonde de température [Sonde 3]
- 8 Retour solaire
- 9 Sonde de température [Sonde 4]
- 10 Retour de la chaudière à bûches, circuits de chauffage
- 11 Eau chaude
- 12 Fau froide

Puissance totale maximale	Robinets à boisseau sphérique de raccordement sur le ballon tampon	Collecteur min.		
30 kW	DN 20	DN25	R 1"	28x1,5
60 kW	DN 25	DN32	R 1¼"	35x1,5
90 kW	DN 32	DN40	R 1½"	42x1,5
160 kW	DN 32	DN50	R 2"	54x1,5
300 kW	DN 40	DN65	R 2½"	76x2
450 kW	DN 40	DN80	R 3"	89x2

Avec échangeur d'ECS et module de stratification

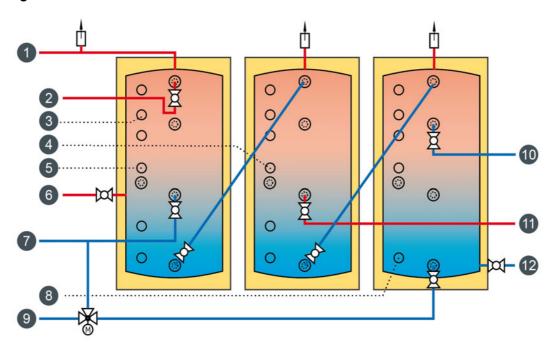
- 1 Départ chaudière à bûches, circuits de chauffage, chaudière mazout/gaz
- 2 Sonde de départ de l'échangeur d'ECS
- 3 Sonde de température [Sonde 1 (en haut)]
- 4 Sonde de température [Sonde 2]
- 5 Départ solaire Haut
- 6 Sonde de température [Sonde 3]
- 7 Retour de la chaudière à mazout/gaz
- 8 Départ solaire Bas
- 9 Retour des circuits hautes températures
- 10 Sonde de température [Sonde 4]
- 11 Retour de l'échangeur d'ECS, solaire
- 12 Délestage au démarrage
- 13 Retour de la chaudière à bûches, circuits de chauffage basse température


8.6 Raccordement en série des accumulateurs

Raccordement en série des accumulateurs

Si les ballons tampon sont de type différent ou s'il est impossible d'installer tous les ballons tampon dans un seul groupe, un raccordement en série des ballons tampon est nécessaire. Il est à noter qu'en cas de raccordement en série des ballons tampon, l'intégration d'une installation solaire n'offre satisfaction que si la préparation de l'ECS s'opère à l'aide d'un échangeur ECS.

Les ballons solaires avec échangeur solaire interne ne sont autorisés que de manière limitée. Les tampons mixtes avec ballon d'ECS suspendu ou échangeur ECS interne tubulaire ne sont pas conçus pour un raccordement en série des accumulateurs. Pour réduire au minimum les pertes de circulation dans les tuyaux, il est judicieux de monter une boucle anti-siphon inclinée vers le bas dans les raccords.


Avec module d'ECS

- 1 Sonde de départ de l'échangeur d'ECS
- 2 Départ chaudière à bûches, circuits de chauffage, chaudière mazout/gaz
- 3 Sonde de température [Sonde 1 (en haut)]
- 4 Sonde de température [Sonde 2]
- 5 Retour module ECS
- 6 Départ solaire
- 7 Retour de la chaudière à mazout/gaz
- 8 Sonde de température [Sonde 3]
- 9 Retour solaire
- 10 Délestage au démarrage
- 11 Sonde de température [Sonde 4]
- 12 Retour de la chaudière à bûches, circuits de chauffage

Puissance totale maximale	Nombre de ballons tampons Conduite de raccordement mi		ent min.	
30 kW	4	DN25	R 1"	28x1,5
50 kW	4	DN32	R 1¼"	35x1,5
65 kW	2	DN32	R11/4"	35x1,5
80 kW	4	DN40	R1½"	42x1,5
100 kW	2	DN40	R1½"	42x1,5
140 kW	4	DN50	R2"	54x1,5
170 kW	2	DN50	R2"	54x1,5

Avec échangeur d'ECS et module de stratification

- 1 Sonde de départ de l'échangeur d'ECS
- 2 Départ chaudière à bûches, circuits de chauffage, chaudière mazout/gaz
- 3 Sonde de température [Sonde 1 (en haut)]
- 4 Sonde de température [Sonde 3]
- 5 Sonde de température [Sonde 2]
- 6 Départ solaire Haut
- 7 Retour de la chaudière à mazout/gaz
- 8 Sonde de température [Sonde 4]
- 9 Retour de la chaudière à bûches, circuits de chauffage basse température
- 10 Retour des circuits hautes températures
- 11 Départ solaire Bas
- 12 Retour de l'échangeur ECS, solaire

ETA

9 Montage

Le montage et l'installation sont strictement réservés à un personnel spécialisé qualifié

ATTENTION!

Risque de blessure

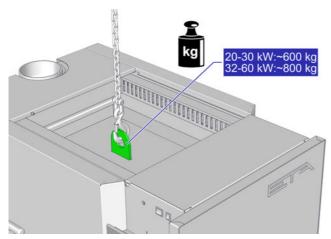
Blessures ou dommages lourds par un montage incorrect.

- L'installation, le montage et la mise en service de l'installation sont strictement réservés à un personnel qualifié et dûment formé.
- Respecter la totalité des consignes de sécurité sur l'installation ainsi que dans la documentation fournie. Lire les instructions dans leur intégralité avant la première mise en service.

Descriptions techniques

Les descriptions techniques de cette documentation représentent une chaudière à bûches SH30 avec moteurs de réglage pour le clapet d'air sur le côté gauche.

Ces illustrations sont valables pour toutes les chaudières à bûches ETA.


9.1 Mise en place de la chaudière

Transport de la chaudière vers le lieu d'installation

Transportez la chaudière vers le lieu d'installation. Observez les écarts nécessaires pour le montage et la maintenance, voir chapitre 2 "Données techniques".

Œillet de transport de la chaudière

Un œillet de transport se trouve sur la partie supérieure pour soulever la chaudière.

En cas d'installation ultérieure d'un brûleur à pellets **TWIN**

Le brûleur à pellets TWIN peut être monté au choix sur le côté gauche ou droit de la chaudière à bûches lors du rééquipement. Si le brûleur à pellets TWIN doit être installé ultérieurement, il faut prendre en compte l'espace supplémentaire nécessaire lors de l'installation de la chaudière à bûches. À ce sujet, voir le chapitre 2 "Données techniques".

9.1.1 Dépose des revêtements latéraux (si nécessaire)

La dépose des revêtements latéraux est possible pour l'incorporation

Si nécessaire, les revêtements latéraux de la chaudière peuvent être déposés pour faciliter l'incorporation. Dans ce cas uniquement, les étapes suivantes sont nécessaires.

Si ceci n'est pas nécessaire, continuez le montage au chapitre 9.2 "Changer le côté de la butée".

Déposez en premier les deux revêtements latéraux de la chaudière.

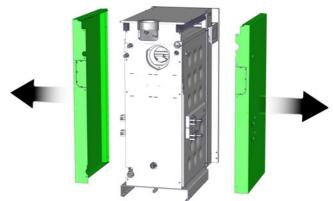
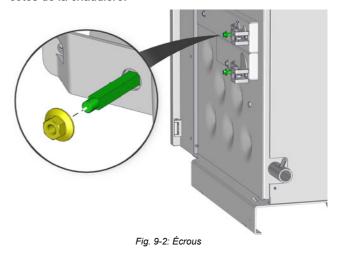



Fig. 9-1: Revêtements latéraux

Dévissez les écrous des axes de clapet d'air sur un des côtés de la chaudière.

Démontez les supports sur le côté opposé et enlevez-les avec les axes de clapet d'air, les clapets d'air, les ressorts et les plaques.

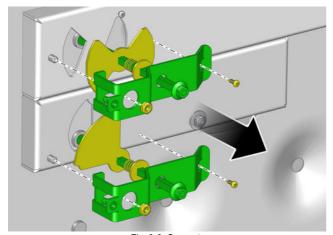
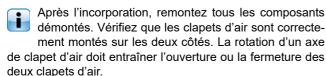



Fig. 9-3: Supports

Déposez aussi la porte isolante de la chaudière. La chaudière peut maintenant être transportée vers le local d'installation. Pour les dimensions de la chaudière sans le revêtement, consultez le chapitre <u>2 "Données techniques"</u>. Si la largeur n'est pas suffisante, démontez avec précaution le support de l'unité de commande ETAtouch.

9.2 Changer le côté de la butée

Changer le côté de la butée des portes

Les portes s'ouvrent en usine sur la droite. Il est possible de changer le côté de butée si nécessaire pour faciliter le remplissage de la chaudière. Si on change de côté de butée, il faut alors effectuer les étapes de montage suivantes.

- 1 Porte isolante
- 2 Porte de la trémie de combustible
- 3 Porte d'allumage
- 4 Porte de la chambre de combustion

Si les portes de droite restent ouvertes, poursuivre le montage au chapitre <u>9.3 "Ventilateur d'extraction des gaz de combustion"</u>.

Changer le côté de la butée de la porte d'isolation

Retirer les tourillons des charnières et enlever la porte d'isolation de la chaudière.

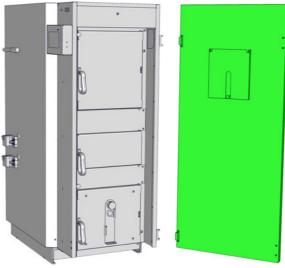


Fig. 9-4: Porte isolante

Démonter les charnières de la porte isolante sur le cadre de porte.

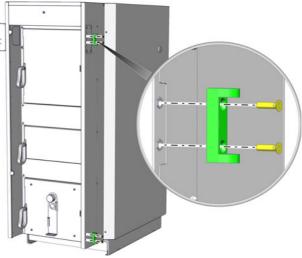


Fig. 9-5: Charnière

Démonter également le cache.

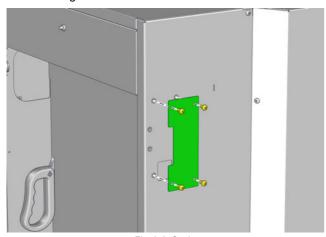


Fig. 9-6: Cache

Retirer le revêtement sur le cadre de la porte.

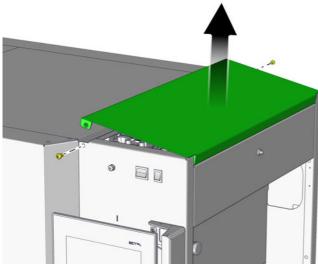


Fig. 9-7: Revêtement

Démonter l'écran de la régulation ETAtouch de son support. Débrancher les câbles (CAN et connexion réseau) de l'écran.

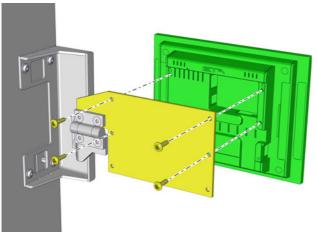


Fig. 9-8: Écran

Monter les supports du cadre de la porte et les monter sur le côté opposé.

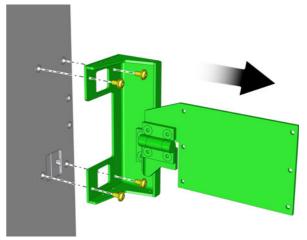
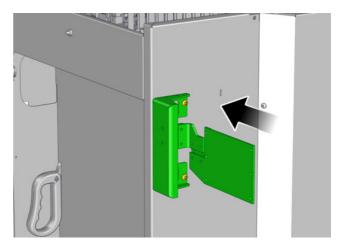
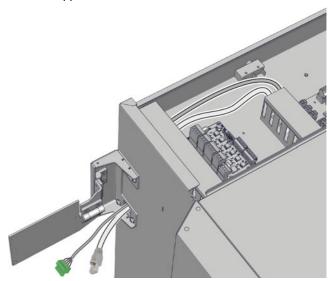




Fig. 9-9: Support

Repasser les câbles (CAN et connexion réseau) de l'écran dans le support.

Brancher les câbles du bus CAN et de la connexion réseau à l'arrière de l'écran.

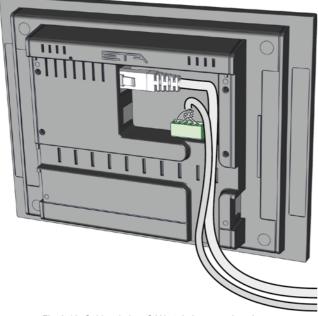


Fig. 9-10: Câbles du bus CAN et de la connexion réseau

Fixer l'écran au support.

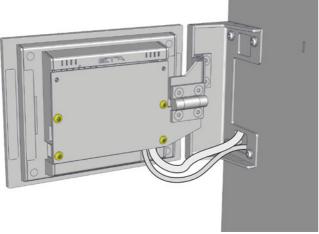


Fig. 9-11: Monter l'écran

Monter le revêtement sur le cadre de la porte.

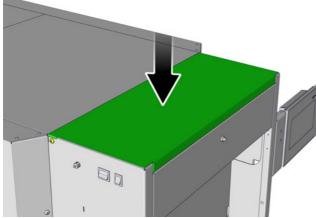


Fig. 9-12: Revêtement

Démonter les aimants de la porte isolante du cadre de la porte et les monter sur le côté opposé.

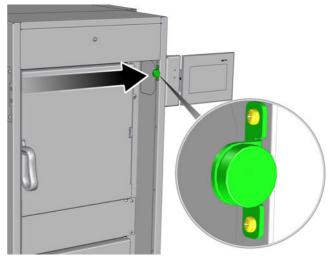


Fig. 9-13: Aimants

Monter le cache et les charnières sur le cadre de porte.

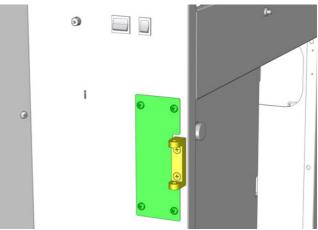


Fig. 9-14: Cache et charnières

Démonter les charnières de la porte isolante, les pivoter et les monter sur le côté opposé.

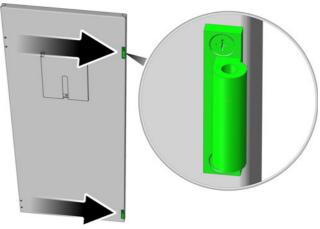


Fig. 9-15: Charnières

Suspendre la porte d'isolation aux charnières de la chaudière et la bloquer avec les tourillons.

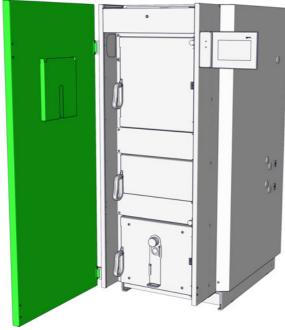


Fig. 9-16: Porte isolante

Changer le côté de la butée des portes de la chaudière

Ouvrir toutes les portes (porte de la trémie de combustible, porte d'allumage et porte de la chambre de combustion), les décrocher et les retirer de la chaudière. Desserrer les écrous de bride sur la charnière et le support du rouleau de fermeture de chaque porte de la chaudière et les remonter sur le côté opposé.

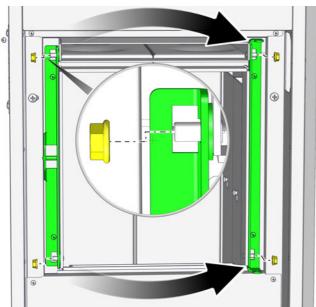
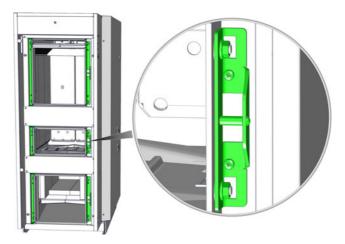



Fig. 9-17: Échanger la charnière et le support du rouleau de fermeture

Sur la porte de la trémie de combustible, monter la poignée et les deux tourillons sur le côté opposé respectif.

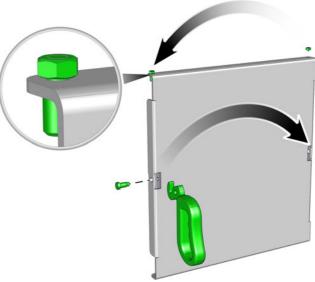


Fig. 9-18: Porte de la trémie de combustible

Sur la porte d'allumage, pivoter la poignée et les deux tourillons à 180° et les remonter.

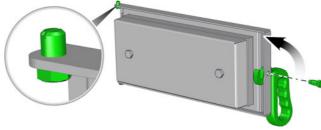


Fig. 9-19: Porte d'allumage

Sur la porte de la chambre de combustion, monter la poignée et les deux tourillons sur le côté opposé respectif.

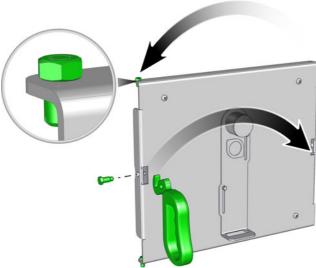
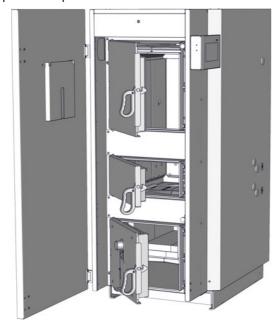



Fig. 9-20: Porte de la chambre de combustion

Suspendre les portes à la chaudière.

Fermer chaque porte pour en contrôler l'étanchéité. Régler la charnière et le support du rouleau de fermeture de sorte que le cordon d'étanchéité soit écrasé uniformément et que la porte ferme hermétiquement.

Décrocher chaque porte pour effectuer son réglage. Desserrer les écrous de bride sur la charnière et le support du rouleau de fermeture. Réduire légèrement la distance par rapport à la chaudière avec les vis de réglage (à tête cruciforme).

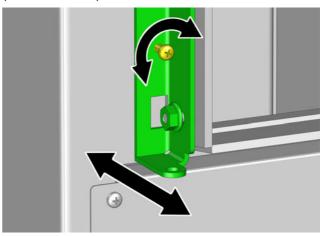


Fig. 9-21: Vis de réglage

Resserrer ensuite les écrous de bride à fond, suspendre la porte et vérifier qu'elle se referme bien hermétiquement. Si ce n'est pas le cas, répéter l'opération.

Une fois ce réglage effectué, le changement du côté de la butée est terminé. Poursuivre le montage avec l'étape suivante.

9.3 Ventilateur d'extraction des gaz de combustion

Monter le ventilateur d'extraction des gaz de combustion

Retirer le ventilateur d'extraction des gaz de combustible de la trémie de combustible et le monter au dos de la chaudière en le serrant uniformément avec les vis à oreilles. Lubrifier les vis à oreilles à l'aide d'un lubrifiant résistant à la chaleur.

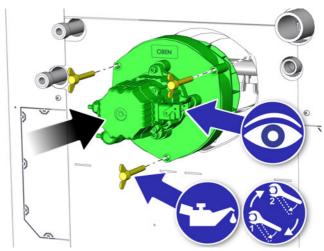


Fig. 9-22: Ventilateur d'extraction des gaz de combustion

Vue de derrière la chaudière, la fiche doit être orientée vers la droite.

9.4 Montage du tuyau d'évacuation des fumées

Montage du tube de fumée vers la cheminée

Installer le conduit d'évacuation de la chaudière à la cheminée. Des notes sur le dimensionnement peuvent être trouvées au chapitre <u>7.1.1 "Conception et exécution"</u>.

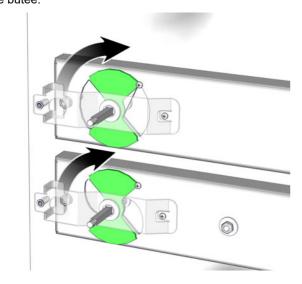
Orifice de nettoyage dans le tube d'évacuation des fumées

Des orifices de nettoyage facilement accessibles doivent être disponibles pour procéder au nettoyage du tuyau d'évacuation des fumées.

Fig. 9-23: Orifice de nettoyage

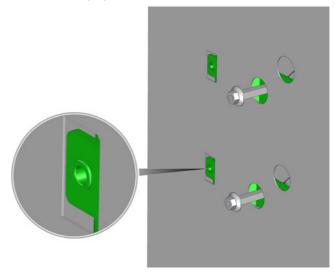
Isolation du tuyau d'évacuation des fumées vers la cheminée

Le tube d'évacuation des fumées de la chaudière à la cheminée doit présenter une isolation en laine de roche d'une épaisseur de min. 30 mm, si possible 50 mm, afin d'éviter les pertes de chaleur pouvant entraîner la formation d'eau de condensation.


9.5 Moteurs de réglage

Monter les moteurs de réglage des clapets d'air

Les représentations ci-dessous s'appliquent au montage des moteurs de réglage sur le côté gauche de la chaudière.


Tourner les deux axes de clapet d'air entièrement jusqu'à la vis de butée.

Tourner à la main les deux moteurs de réglage pour les placer dans la même position que les clapets d'air.

Briser les languettes sur le revêtement latéral sur lequel les moteurs de réglage sont montés.

Monter le dispositif de fixation des moteurs de réglage.

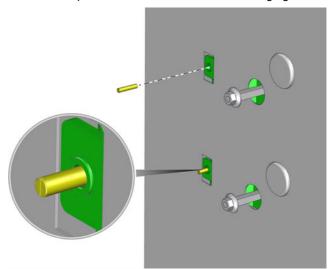
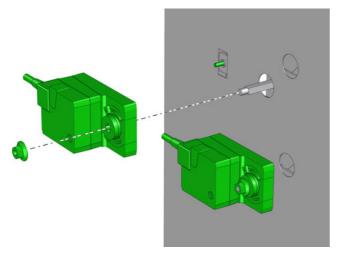
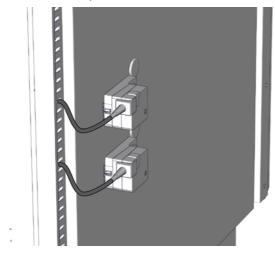
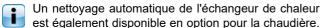



Fig. 9-24: Dispositif de fixation

Mettre les caches en caoutchouc sur le côté opposé pour que les axes de clapet d'air ne soient pas poussés hors de la chaudière lors du montage des moteurs de réglage.


Pousser les deux moteurs de réglage sur les axes de clapet d'air et les fixer avec les écrous.

Ne pas serrer les boulons trop fort, il doit rester un léger jeu dans le sens de l'axe pour que les clapets d'air puissent tourner facilement.


Poser les conduites des moteurs de réglage sur les canaux de câbles vers la platine de la chaudière.

Boucher les ouvertures sur les deux revêtements latéraux avec les caches en caoutchouc.

9.6 Levier de nettoyage

Nettoyage automatique de l'échangeur de chaleur en option

est également disponible en option pour la chaudière. Grâce à cette option, un entraînement est monté à la place du levier de nettoyage qui actionne les turbulateurs de l'échangeur de chaleur à intervalles réguliers. Le nettoyage automatique de l'échangeur de chaleur peut être monté sur

le côté gauche ou droit de la chaudière. Le montage du nettoyage automatique de l'échangeur de chaleur est décrit dans la propre notice d'utilisation livrée avec cette option.

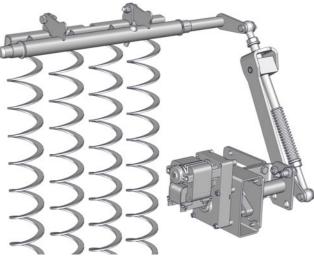


Fig. 9-25: Nettoyage automatique de l'échangeur de chaleur

Monter le levier de nettoyage

Retirer le revêtement situé à côté du raccord des gaz d'échappement.

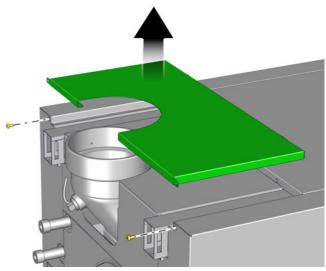


Fig. 9-26: Revêtement

Retirer l'isolation posée sur couvercle de l'échangeur de chaleur.

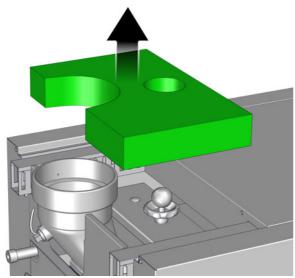


Fig. 9-27: Isolation

Desserrer les écrous moletés sur le couvercle de l'échangeur thermique en les tournant dans le sens inverse des aiguilles d'une montre et en faisant pivoter la poignée sphérique sur 180°.

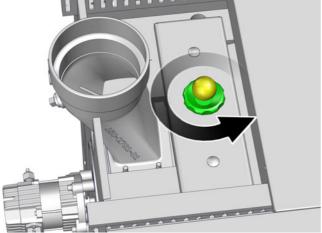


Fig. 9-28: Écrous moletés et poignée sphérique

Retirer le couvercle de l'échangeur thermique.

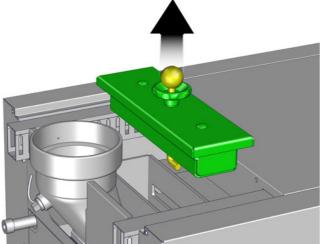


Fig. 9-29: Couvercle de l'échangeur de chaleur

le

Insérer le levier de nettoyage du côté de la chaudière sur lequel les moteurs de réglage du clapet d'air sont montés.

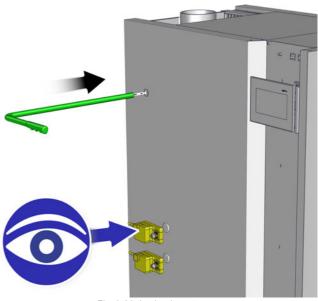


Fig. 9-30: Levier de nettoyage

Insérer le levier de nettoyage dans le tuyau de la suspension du turbulateur et le sécuriser avec le boulon.

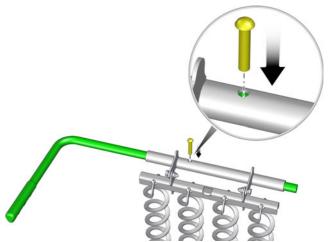
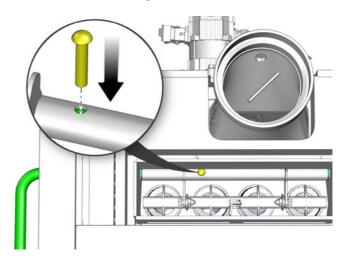



Fig. 9-31: Boulon

Repositionner le couvercle de l'échangeur de chaleur. Tourner la poignée sphérique dans le sens des aiguilles d'une montre jusqu'à la butée. Verrouiller ensuite à nouveau le couvercle de l'échangeur de chaleur à l'aide de l'écrou de fixation.

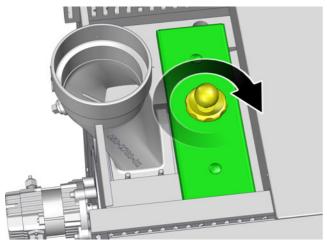


Fig. 9-32: Couvercle de l'échangeur de chaleur

Remettre l'isolation en place.

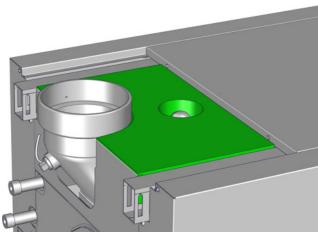


Fig. 9-33: Isolation

Remonter le revêtement.

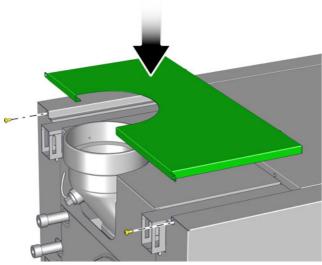


Fig. 9-34: Revêtement

9.7 Démonter les habillages

Retirer le revêtement de la face supérieure

Retirer le revêtement sur le cadre de la porte.

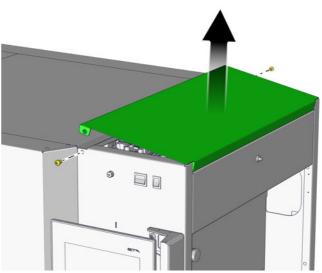


Fig. 9-35: Revêtement

Soulever le revêtement des platines de la chaudière et le retirer.

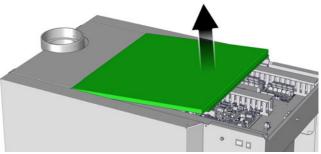


Fig. 9-36: Revêtement

9.8 Connexion réseau

Connexion réseau de la chaudière

Le câble d'alimentation réseau est déjà raccordé à l'écran en usine et se trouve à côté des platines de la chaudière.

Pour la transmission du signal, il faut installer une rallonge réseau (1x connecteur mâle/1x douille) sur site.

Raccordement électrique

10.1 Conditions préalables

Le raccordement électrique doit uniquement être effectué par un personnel qualifié

ATTENTION!

Risque de blessure

Blessures par choc électrique

- L'installation électrique est strictement réservée à un personnel qualifié en conséquence.
- Le système électrique doit être exécuté conformément au schéma des connexions ou au raccordement électrique.

Conditions préalables

Les réglementations, ainsi que les dispositions spéciales des distributeurs d'énergie locaux, doivent être observées.

Intégrer un dispositif de sectionnement de la catégorie de surtension III dans l'installation électrique fixe pour un sectionnement complet selon les prescriptions de montage. En principe, ces exigences sont remplies par exemple par un disjoncteur de protection de circuit.

Fusible secteur	C 13
Raccordement au secteur	3 x 1,5 ²
Type de câble d'alimentation	H05VV-F 3G 1,5
Composants 230 V C.A. :	1,0 ²
Sonde de température :	0,5 ² - 1,0 ²

Pour les pompes à vitesse variable (commandé par un signal PWM) il faut prendre en compte les valeurs limites données par le fabricant.

Passage des câbles dans le canal de câbles

Posez les câbles dans les chemins de câbles prévus à cet effet.

À l'intérieur des chemins de câbles, les câbles sont protégés contre les contraintes mécaniques et thermiques.

Raccorder la chaudière à la liaison équipotentielle

La chaudière doit être raccordée à la liaison équipotentielle du local d'installation ou du bâtiment. Observer à ce sujet les prescriptions nationales en vigueur.

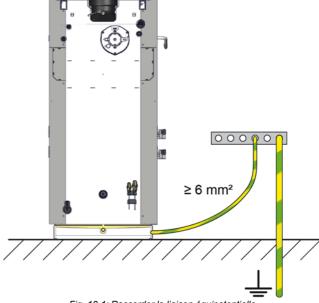


Fig. 10-1: Raccorder la liaison équipotentielle

Deux perçages ont été pratiqués dans les pieds de la chaudière pour le raccordement de la liaison équipotentielle (section minimum de 6 mm²).

DANGER!

Choc électrique

Tout contact avec les composants sous tension sur les platine entraîne des blessures et des dommages matériels.

Avant le début d'une activité, désactivez impérativement l'installation sur toutes les bornes et tous les côtés et sécurisez l'installation contre toute réactivation, puis contrôlez l'absence de toute tension sur l'installation.

ATTENTION!

Dommages matériels au niveau des platines

Une décharge électrostatique peut endommager les platines. C'est pourquoi il est impératif de respecter les mesures de protection ESD lors de la manipulation des platines.

- Évacuez l'énergie électrostatique avant et pendant le contact des platines. Déchargez-la par exemple en touchant des objets métalliques (bâti de la chaudière, tubes de chauffage). Il est recommandé d'utiliser des cordons de déchargement ou des chaussures de travail ESD spéciales.
- Ne mettez pas la platine en contact avec des objets conducteurs dont la charge électrostatique n'a pas encore été évacuée.
- Touchez la platine uniquement sur les bords extérieurs, pas sur les bornes ni les points de soudure.

<u>^</u>

ATTENTION!

Câbles souples

Si le câblage n'est pas réalisé au moyen de câbles souples, les contacts des connecteurs seront soumis à une contrainte mécanique excessive. Dans ce cas, la garantie sur les composants électroniques ne s'applique pas.

 Utiliser exclusivement des câbles flexibles pour le câblage.

Puissances maximales

Sortie 230 V	Puissance maximale
Une sortie individuelle	250 W
Somme de toutes les sorties	700 W

(fonction spéciale)	Puissance Puissance de cou- pure
Une sortie de relais individuelle	500 W

Longueur de câble maximale pour le capteur de température

La longueur de câble maximale pour le raccordement électrique du capteur de température s'élève à 20 m.

Le câble d'alimentation doit être muni d'un dispositif de décharge de traction

La conduite d'alimentation de la chaudière doit être munie d'un dispositif de décharge de traction. Une attache est prévue au niveau des caniveaux de câbles pour la fixation.

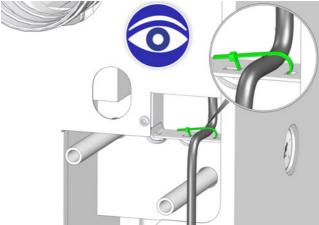


Fig. 10-2: Décharge de traction

Schémas de connexion

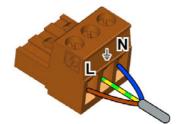


Fig. 10-3: Ligne secteur

Fig. 10-4: Entrée analogique

Fig. 10-5: Interrupteur numérique

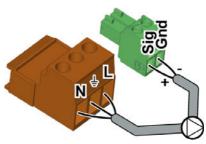


Fig. 10-6: Pompe à vitesse variable

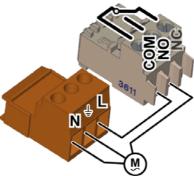


Fig. 10-7: Fonction spéciale - Pompe (avec extension d'alimentation 230 V)

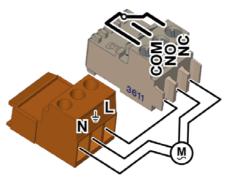


Fig. 10-8: Fonction spéciale - Vanne de commutation avec commande à 3 points

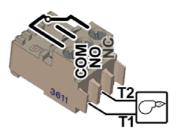
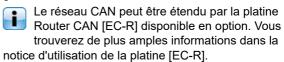


Fig. 10-9: Fonction spéciale - Brûleur


Fig. 10-10: Interrupteur

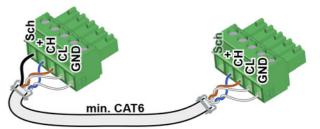
10.1.1 Bus CAN

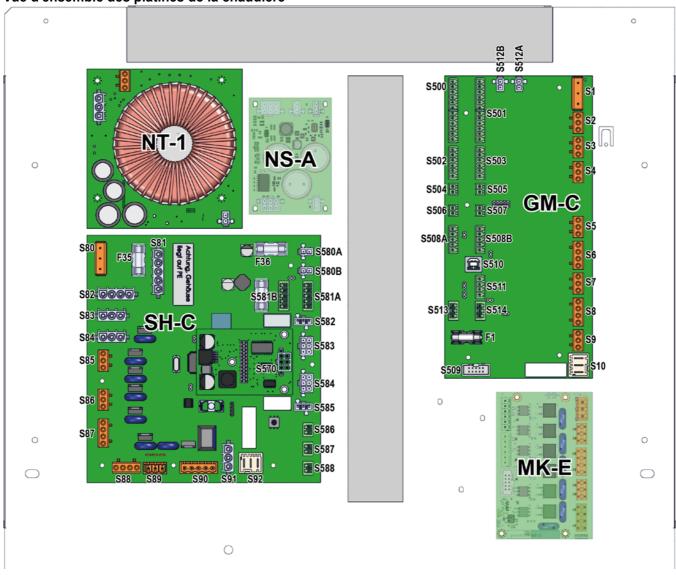
Instructions pour les câbles de bus CAN

Les lignes de bus CAN doivent présenter les spécifications suivantes :

- La topologie du bus CAN est uniquement de type « topologie en lignes ». Une « topologie en étoile » est interdite.
- La longueur totale maximale de toutes les lignes de bus-CAN est de 400 m. Poser les lignes de sorte à réduire au maximum la distance entre les platines. Si la longueur des lignes CAN dépasse la longueur totale maximale, le fonctionnement correct ne peut pas être garanti.

 Il faut utiliser pour les lignes de bus CAN des câbles CAT-6 ou de qualité supérieure.

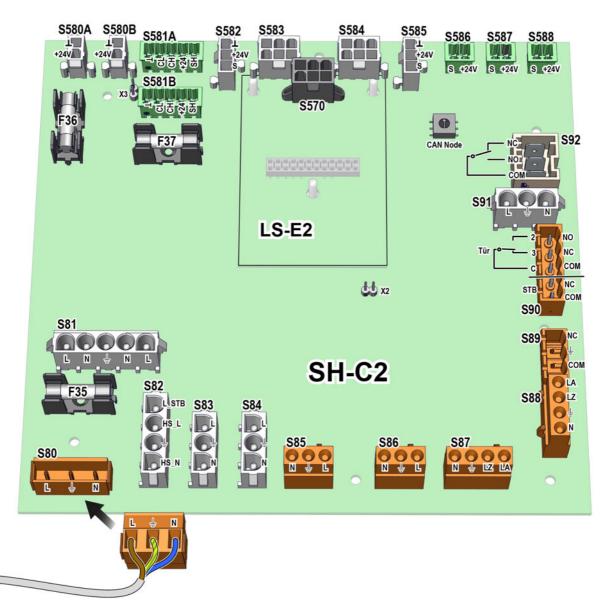



Fig. 10-11: Ligne de bus CAN (CAT6 et blindage unilatéral)

Désignation des bornes

Sch	Blindage
+	Alimentation électrique
СН	Câble de transmission de données CH
CL	Câble de transmission de données CL
GND	Masse

10.2 Vue d'ensemble des platines


Vue d'ensemble des platines de la chaudière

La platine [MK-E] est une « platine d'extension » pour des circuits de chauffage supplémentaires. La platine optionnelle alimentée par courant de secours [NS-A] assure que l'amenée en air primaire de la chaudière soit fermée en cas de coupure de courant.

10.3 Platine SH-C2

i

Utiliser seulement des câbles flexibles par ex. pour les pompes, la vanne mélangeuse et la sonde de température. Respecter les instructions pour le câblage, se reporter à 10.1 "Conditions préalables", et les conduites de bus CAN, se reporter à 10.1.1 "Bus CAN".

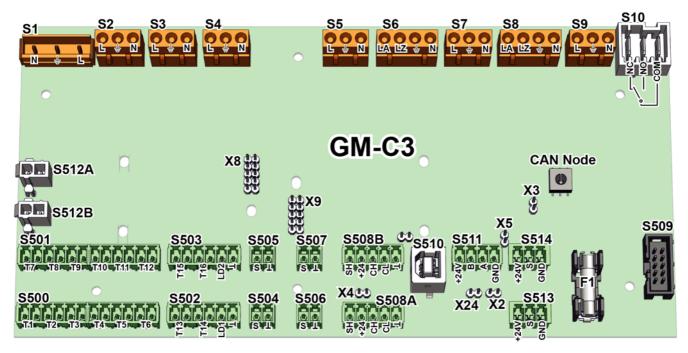
Ces bornes peuvent être utilisées (en fonction de la configuration) :

Borne	Fonction	Section mini- male	Affectation standard
S80	Alimentation 230 V	3 x 1,5 mm ²	Ligne secteur
S82	Extension d'alimentation 230 V		vers la platine [PE-C]: borne [S20] et [S25] (pour brûleur à pellets TWIN)
S84	Sortie 230 V		Entraînement du nettoyage automatique de l'échangeur de chaleur en option
S86	Sortie 230 V	3 x 1 mm²	Pompe brûleur
S87	Sortie 230 V	4 x 1 mm²	Aide au démarrage
S88	Sortie 230 V	4 x 1 mm²	Vanne de retour
S91, S585	Sortie 230 V		Ventilateur d'extraction des gaz de combustion
S92	Sortie libre de potentiel (Sonderfunktion)		Message de défaut/soupape d'inversion de l'installation solaire
S583	Sortie 24 V CA/CC/ Entrée analogique		Servomoteur en haut

Ces bornes peuvent être utilisées (en fonction de la configuration) :

Borne	Fonction	Section mini- male	Affectation standard
S584	Sortie 24 V CA/CC/ Entrée analogique		Servomoteur en bas
S585	Entrée d'impulsion		Vitesse Extracteur de fumée
S581B	Bus CAN	voir <u>10.1.1 "Bus</u> <u>CAN"</u>	

Ces bornes sont déjà câblées côté installation :


Borne	Fonction	Affectation standard
CAN Node	Commutateur de nœud CAN-Bus	
F35	Fusible 230 V, T 6,3 A (électronique)	
F36	Fusible T 500 mA (alimentation 24 V)	
F37	Fusible T 500 mA (CAN-Bus)	
S81	Entrée 230 V	Interrupteur d'alimentation
S83	Extension d'alimentation 230 V	vers le bloc d'alimentation
S85	Extension d'alimentation 230 V	vers la platine [GM-C]: borne [S1]
		Interrupteur de maintenance de la chaudière
S89	Entrée 230 V	Un interrupteur de manque d'eau supplémentaire (sur site) peut être raccordé à cette borne dans une connexion en série.
S90 STB	Entrée 230 V	Contacteur de sécurité thermique (CST)
S90 TÜR	Entrée 24 V	Contacteur de porte isolante
S570	Entrée analogique	Sonde Lambda
S580A	Alimentation 24 V	depuis le bloc d'alimentation
S580B	Extension d'alimentation 24 V	vers la platine [GM-C] : borne [S512A]
S581A	Bus CAN	vers la platine [GM-C]: borne [S508A]
S582	Entrée analogique	
S586	Entrée de compteur numérique	
S587	Entrée de compteur numérique	
S588	Entrée 24 V	
X2	Boot Jumper	
X3	Résistance de fin de ligne du bus CAN	

Les entrées de compteur ou les entrées de fréquence captent des fréquences numériques et sont donc prévues pour des capteurs spéciaux (par exemple des capteurs de débit numériques).

10.4 Platine GM-C3

i

Utiliser seulement des câbles flexibles par ex. pour les pompes, la vanne mélangeuse et la sonde de température. Respecter les instructions pour le câblage, se reporter à 10.1 "Conditions préalables", et les conduites de bus CAN, se reporter à 10.1.1 "Bus CAN".

Ces bornes peuvent être utilisées (en fonction de la configuration) :

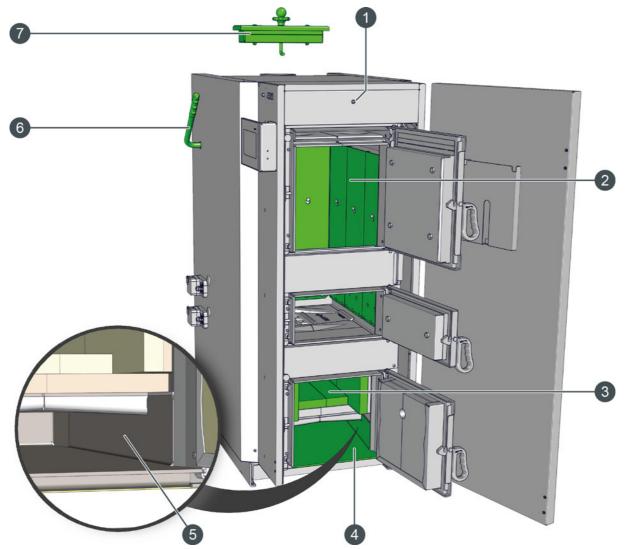
_	_	Section mini-	
Borne	Fonction	male	Affectation standard
S2	Sortie 230 V	3 x 1 mm²	Pompe chaudière
S3	Sortie 230 V	3 x 1 mm²	Eau chaude pompe de charge
S4	Sortie 230 V	3 x 1 mm ²	Pompe externe / Pompe du collecteur
S5	Sortie 230 V	3 x 1 mm²	Circuit de chauffage 2 : pompe de chauffage
S6	Sortie 230 V	4 x 1 mm²	Circuit de chauffage 2 : vanne mél. chauffage
S7	Sortie 230 V	3 x 1 mm²	Circuit de chauffage 1 : pompe de chauffage
S8	Sortie 230 V	4 x 1 mm²	Circuit de chauffage 1 : vanne mél. chauffage
S9	Extension d'alimentation 230 V	3 x 1 mm²	sur la platine [MK-E] : borne [S15]
S10	Sortie libre de potentiel (Sonderfunktion)		Pompe de circulation/brûleur
S500 T3	Entrée température	2 x 0,5 mm ²	Brûleur
S500 T5	Entrée température	2 x 0,5 mm ²	Sonde de température extérieure
S500 T6	Entrée température	2 x 0,5 mm ²	Collecteur
S501 T7	Entrée température	2 x 0,5 mm ²	Eau chaude
			Sonde de température ballon tampon 1 (en haut)
S501 T8	Entrée température	2 x 0,5 mm²	Cette sonde de température est toujours montée en haut sur le ballon tampon. Si par exemple 3 sondes de température sont montées sur le ballon tampon, alors la sonde de température du ballon tampon 1 est en haut, la sonde du ballon tampon 2 au milieu et la sonde du ballon tampon 3 en bas.
S501 T9	Entrée température	2 x 0,5 mm ²	Sonde de température ballon tampon 2
S501 T10	Entrée température	2 x 0,5 mm ²	Sonde de température ballon tampon 3
S501 T11	Entrée température	2 x 0,5 mm ²	Sonde de température ballon tampon 4
S501 T12	Entrée température	2 x 0,5 mm ²	Sonde de température ballon tampon 5
S502 T13	Entrée température	2 x 0,5 mm ²	Circuit de chauffage 1 : sonde de départ
S502 T14	Entrée température	2 x 0,5 mm ²	

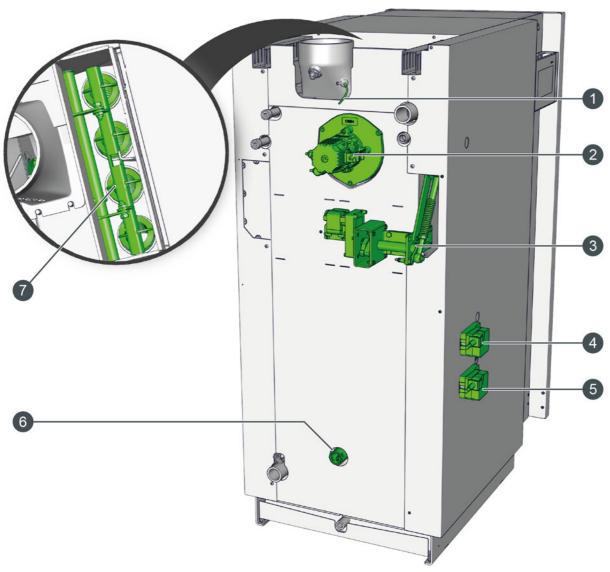
Ces bornes peuvent être utilisées (en fonction de la configuration) :

Borne	Fonction	Section mini- male	Affectation standard
S502 LD1	Sortie DEL	2 x 0,5 mm ²	
S503 T15	Entrée température	2 x 0,5 mm ²	Circuit de chauffage 2 : sonde de départ
S503 T16	Entrée température	2 x 0,5 mm ²	
S503 LD2	Sortie DEL	2 x 0,5 mm ²	
S504	Sortie MLI/sortie analogique	2 x 0,5 mm ²	Vitesse de rotation de la pompe sur la borne [S2]
S505	Sortie MLI/sortie analogique	2 x 0,5 mm ²	Régime de la pompe sur la borne [S3]
S506	Sortie MLI/sortie analogique	2 x 0,5 mm ²	Vitesse de rotation de la pompe sur la borne [S4]
S507	Sortie MLI/sortie analogique	2 x 0,5 mm ²	Vitesse de rotation de la pompe sur la borne [S5]
S508B	Bus CAN	voir <u>10.1.1 "Bus</u> <u>CAN"</u>	
S511	Bus RS-485	Consulter la no- tice de la sonde d'ambiance	Sonde ambiante numérique
S513	Entrée analogique, numérique, compteur	3 x 0,75 mm ²	
S514	Entrée analogique, numérique, compteur	3 x 0,75 mm²	Réponse du nettoyage automatique de l'échan- geur de chaleur en option

Ces bornes sont déjà câblées côté installation :

Borne	Fonction	Affectation standard
CAN Node	Commutateur de nœud CAN-Bus	
F1	Fusible T 500 mA (alimentation 24 V)	
S1	Alimentation 230 V	de la platine [SH-C]: borne [S85]
S500 T1	Entrée température	Chaudière
S500 T2	Entrée température	Retour
S500 T4	Entrée température	Gaz de combustion
S508A	Bus CAN	vers la platine [SH-C]: borne [S581A]
S509	Transmission de signal	vers la platine [MK-E] : borne [S517]
S510	Transmission de données	vers unité de commande ETAtouch
S512A	Alimentation 24 V	de la platine [SH-C]: borne [S580B]
S512B	Alimentation 24 V	
X2	Alimentation Bus CAN GND (en mode de fond	ctionnement en îlotage)
X3	Boot Jumper	
X4	Résistance de fin de ligne du bus CAN	
X5	Résistance finale du bus RS-485	
X8	Borne pour platine à enficher	
X9	Borne pour platine à enficher	
X24	Alimentation du bus CAN +24 V (en mode de	fonctionnement en îlotage)


Les entrées de compteur ou les entrées de fréquence captent des fréquences numériques et sont donc prévues pour des capteurs spéciaux (par exemple des capteurs de débit numériques).


11 Mise en service

Ouvertures de maintenance et composants

Les illustrations présentent une chaudière avec une puissance de 30 kW et les servomoteurs pour le clapet d'air du côté gauche. Ces illustrations sont valables pour toutes les chaudières à bûches.

- Contacteur de porte 1
- 2 Trémie de combustible
- Chambre de combustion 3
- 4 Canal d'évacuation des cendres
- 5 Parois du canal d'évacuation des cendres
- 6 Levier de nettoyage des turbulateurs dans l'échangeur de chaleur
- Couvercle de l'échangeur thermique

- 1 Sonde de température des fumées
- 2 Ventilateur d'extraction des gaz de combustion
- 3 Nettoyage automatique de l'échangeur de chaleur en option
- 4 Servomoteur de l'air primaire
- 5 Moteur de réglage de l'air secondaire
- 6 Sonde lambda
- 7 Turbulateurs intégrés à l'échangeur de chaleur

11.1 Liste de contrôle

Liste de contrôle pour la mise en service

Lors de la mise en service, vérifier les points suivants pour vous assurer que le produit fonctionne correctement. Vous Lors de la mise en service, veriller les polities suivaites pour vous accure. que la trouverez également de plus amples informations dans les instructions de service jointes.

Act	Notes			
Alir				
1)	Avant d'enclencher l'interrupteur secteur, couper l'alimentation en tension de la chaudière (par ex. au moyen d'un fusible dans la boîte à fusibles). Débrancher la borne du câble d'alimentation de la platine de la chaudière. Remettre l'alimentation en tension et contrôler la tension dans le câble d'alimentation. Vérifier la phase par rapport au conducteur neutre et au conducteur de protection (230 V). Vérifier la continuité du câble neutre par rapport au câble de protection.			
2)	Vérifier que seuls des câbles électriques flexibles ont été utilisés.			
3)	Vérifier l'absence de résidus de fils sur les platines et les retirer le cas échéant.			
4)	Vérifier tous les connecteurs des platines, ils doivent être correctement enfichés et les fils doivent être bien vissés.			
5)	Rebrancher la borne pour le câble d'alimentation sur la platine de la chaudière.			
6)	Contrôler la mise à la terre supplémentaire pour la chaudière au niveau du raccordement PE sur les patins de la chaudière (au sol).			
Eαι	ı de chauffage et hydraulique			
1)	Contrôler la pression de l'eau, elle doit être comprise entre 1,5 et 2 bar.			
	Vérifiez ou assurez-vous que l'eau de chauffage que vous avez remplie correspond à la dureté de l'eau autorisée. À ce sujet, se reporter au chapitre <u>7.3.1 "Dureté de l'eau"</u> .			
	de combustion			
1)	Contrôler les ouvertures d'air alimenté suffisantes et accessibles dans le local.			
Dis	positifs de sécurité			
1)	Vérifier que les circuits basse température sont équipés de thermostats (pour se protéger des flux trop chauds).			
2)	Vérifiez qu'un vase d'expansion à membrane est présent et peut contenir au moins 10 % du volume total du système.			
3)	Contrôler l'écoulement de la soupape de sécurité. L'écoulement doit être dirigé vers le sol ou vers un siphon. S'il y a d'autres générateurs de chaleur, contrôler également l'écoulement de leur soupapes de sécurité.			
4)	Vérifier si une soupape thermique de sécurité est installée. Contrôler l'écoulement de la soupape thermique de sécurité. L'écoulement doit aboutir dans un siphon librement visible et ce dernier être raccordé au système d'eaux usées.			
	La pression minimale dans la conduite d'eau froide doit atteindre 2 bar sans dépasser une tem- pérature de 15 °C. Il est interdit de bloquer la conduite d'eau froide, les poignées doivent être en- levées des armatures d'arrêt.			
Tuk	pe de fumée vers la cheminée			
1)	Vérifier que le tube de fumée est étanche et incliné.			
2)	Vérifier que le tube de fumée a été suffisamment isolé.			
Por	tes de la chaudière, sonde lambda, clapet d'air			
1)	Si le côté butée des portes de la chaudière a été modifié, contrôler qu'elles ferment bien toutes de manière étanche.			
2)	Contrôler que la sonde lambda est vissée de manière étanche dans la chaudière.			
3)	Déplacer les servomoteurs pour les clapets d'air primaire et secondaire et vérifier qu'ils ouvrent et ferment complètement.			
Net	Nettoyage automatique de l'échangeur de chaleur (s'il y en a un)			
1)	Contrôler le montage correct du nettoyage automatique de l'échangeur de chaleur.			

Activités				
Uni				
Uniquement avec le brûleur à pellets TWIN : Extraction du combustible et silo à pellets				
1)	Déconnecter de la platine la borne pour le capteur de niveau du réservoir de stockage du brûleur à pellets. À ce sujet, se reporter au chapitre 10 "Raccordement électrique".			
	La séparation permet de simuler un réservoir « plein » pour la régulation et d'empêcher ainsi le démarrage de l'extraction de combustible.			
2)	Vérifier l'absence de corps étrangers dans le silo à pellets et les retirer si nécessaire.			
3)	Vérifier le cheminement des tuyaux à pellets (par ex. rayons trop étroits). Vérifier également que chaque tuyau à pellets est mis à la terre.			
4)	Vérifier que tous les colliers de serrage des tuyaux à granulés sont serrés.			
5)	Contrôler le câblage entre l'extraction des pellets et le brûleur à pellets.			
6)	Contrôler le câblage du bus CAN entre la chaudière à bûches et le brûleur à pellets. Contrôler que les résistances terminales pour le bus CAN sont correctement appliquées.			
7)	Démarrer le moteur de l'extraction du combustible dans la régulation et vérifier si des dysfonctionnements apparaissent. Si aucune erreur ne se produit, remplir le silo à pellets d'une petite quantité de pellets.			
	Avec une extraction du combustible dotée d'une unité de commutation, contrôler si des pellets sont réellement transportés par chaque sonde d'aspiration individuelle.			
	Un remplissage complet du silo à pellets n'est possible qu'après une mise en service réussie.			
	8)Fermer l'accès au silo à pellets. Reconnecter la borne du capteur de niveau à la platine.			
9)	Démarrer dans la régulation le remplissage des réservoirs dans le brûleur à pellets.			
	En cas d'extraction des pellets avec des vis sans fin et de longues conduites d'aspiration, il est possible que le paramètre [Puissance extraction] doive être réduit. Le paramètre se trouve dans le menu texte du silo à pellets sous [Extraction] -> [Puissance extraction]. Pour effectuer la modification, l'autorisation [SAV] est requise.			
Col	nfiguration			
1)	Configurer l'installation de chauffage et l'environnement avec l'assistant de configuration.			
Entrées et sorties dans la régulation				
	Contrôler toutes les entrées et sorties qui ont été installées par le client, comme par ex. : la sonde de température extérieure, la sonde de température du réservoir tampon, la pompe de chauffage, le mélangeur, etc.			
Αllι	umage automatique (si présent)			
1)	Ajuster le paramètre [État de charge maximum pour le démarrage]. Le paramètre se trouve dans le bloc de fonction de la chaudière à journaux sous [Réglages] (touche			
	Dans des circuits basse température (par ex. : chauffage au sol), régler le paramètre sur 20 à 25 % et pour les circuits haute température (par ex. chauffage à radiateurs) sur 30 à 35 %.			
	quement avec le brûleur à pellets TWIN :			
Dér	narrer l'évacuation des cendres			
1)	Démarrer l'évacuation des cendres dans la régulation.			
	Cela réinitialise certains paramètres si les moteurs ont été précédemment mis en service manuel- lement.			
Test de mise en service dans la régulation				
1)	Démarrer le test de mise en service dans la régulation (dans le bloc de fonction de la chaudière) et tester les groupes.			

Activités		Notes
Instruction du client		
1)	Informer le client sur le fonctionnement de la chaudière et expliquer les réglages nécessaires dans la régulation. Vous trouverez des informations dans la notice d'utilisation de la chaudière.	
	Expliquer au client comment nettoyer et entretenir régulièrement la chaudière à l'aide du manuel d'entretien ou de la régulation ETAtouch.	
2)	Démarrer un mode de chauffe et effectuer une mesure des émissions.	
3)	Vérifier si les consommateurs (par exemple : circuits de chauffage, réservoir d'eau chaude, réservoir tampon) deviennent chauds et atteignent la température de consigne requise.	
4)	Sauvegarder la configuration de l'installation de chauffage dans la régulation ETAtouch.	
5)	Informer le client de la possibilité de commander la commande à distance de la chaudière au moyen de l'enregistrement sur www.meinETA.at . Le client pourra ainsi piloter sa chaudière à distance.	
6)	Si des enregistrements de données sont nécessaires (pour une subvention ou à d'autres fins), créez un modèle sous [Paramètres système > Enregistrement des données > Créer un nouveau modèle] lors de la mise en service pour l'enregistrement des points de données nécessaires et l'envoi par e-mail (voir le mode d'emploi).	

11.2 Opérations finales

Montage du revêtement de la chaudière

Remontez les pièces du revêtement de la chaudière qui ont été retirées lors de l'assemblage.

Glisser l'isolation du plancher

Glisser l'isolation du plancher sous la chaudière.

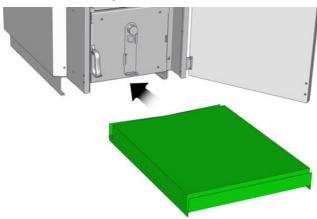


Fig. 11-1: Isolation du plancher

Retirer les films de protection

Retirer tous les films de protection de tous les revêtements. Après une période de fonctionnement prolongée, il n'est plus possible de retirer un film sans endommager la peinture.

